Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karel Talavera is active.

Publication


Featured researches published by Karel Talavera.


Proceedings of the National Academy of Sciences of the United States of America | 2009

TRPA1 acts as a cold sensor in vitro and in vivo

Yuji Karashima; Karel Talavera; Wouter Everaerts; Annelies Janssens; Kelvin Y. Kwan; Rudi Vennekens; Bernd Nilius; Thomas Voets

TRPA1 functions as an excitatory ionotropic receptor in sensory neurons. It was originally described as a noxious cold-activated channel, but its cold sensitivity has been disputed in later studies, and the contribution of TRPA1 to thermosensing is currently a matter of strong debate. Here, we provide several lines of evidence to establish that TRPA1 acts as a cold sensor in vitro and in vivo. First, we demonstrate that heterologously expressed TRPA1 is activated by cold in a Ca2+-independent and Ca2+ store-independent manner; temperature-dependent gating of TRPA1 is mechanistically analogous to that of other temperature-sensitive TRP channels, and it is preserved after treatment with the TRPA1 agonist mustard oil. Second, we identify and characterize a specific subset of cold-sensitive trigeminal ganglion neurons that is absent in TRPA1-deficient mice. Finally, cold plate and tail-flick experiments reveal TRPA1-dependent, cold-induced nociceptive behavior in mice. We conclude that TRPA1 acts as a major sensor for noxious cold.


Nature | 2005

Heat activation of TRPM5 underlies thermal sensitivity of sweet taste

Karel Talavera; Keiko Yasumatsu; Thomas Voets; Guy Droogmans; Noriatsu Shigemura; Yuzo Ninomiya; Robert F. Margolskee; Bernd Nilius

TRPM5, a cation channel of the TRP superfamily, is highly expressed in taste buds of the tongue, where it has a key role in the perception of sweet, umami and bitter tastes. Activation of TRPM5 occurs downstream of the activation of G-protein-coupled taste receptors and is proposed to generate a depolarizing potential in the taste receptor cells. Factors that modulate TRPM5 activity are therefore expected to influence taste. Here we show that TRPM5 is a highly temperature-sensitive, heat-activated channel: inward TRPM5 currents increase steeply at temperatures between 15 and 35 °C. TRPM4, a close homologue of TRPM5, shows similar temperature sensitivity. Heat activation is due to a temperature-dependent shift of the activation curve, in analogy to other thermosensitive TRP channels. Moreover, we show that increasing temperature between 15 and 35 °C markedly enhances the gustatory nerve response to sweet compounds in wild-type but not in Trpm5 knockout mice. The strong temperature sensitivity of TRPM5 may underlie known effects of temperature on perceived taste in humans, including enhanced sweetness perception at high temperatures and ‘thermal taste’, the phenomenon whereby heating or cooling of the tongue evoke sensations of taste in the absence of tastants.


The Journal of Neuroscience | 2007

Bimodal Action of Menthol on the Transient Receptor Potential Channel TRPA1

Yuji Karashima; Nils Damann; Jean Prenen; Karel Talavera; Andrei Segal; Thomas Voets; Bernd Nilius

TRPA1 is a calcium-permeable nonselective cation transient receptor potential (TRP) channel that functions as an excitatory ionotropic receptor in nociceptive neurons. TRPA1 is robustly activated by pungent substances in mustard oil, cinnamon, and garlic and mediates the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate a bimodal sensitivity of TRPA1 to menthol, a widely used cooling agent and known activator of the related cold receptor TRPM8. In whole-cell and single-channel recordings of heterologously expressed TRPA1, submicromolar to low-micromolar concentrations of menthol cause channel activation, whereas higher concentrations lead to a reversible channel block. In addition, we provide evidence for TRPA1-mediated menthol responses in mustard oil-sensitive trigeminal ganglion neurons. Our data indicate that TRPA1 is a highly sensitive menthol receptor that very likely contributes to the diverse psychophysical sensations after topical application of menthol to the skin or mucous membranes of the oral and nasal cavities.


The Journal of Physiology | 2005

Gating of TRP channels: a voltage connection?

Bernd Nilius; Karel Talavera; Grzegorz Owsianik; Jean Prenen; Guy Droogmans; Thomas Voets

TRP channels represent the main pathways for cation influx in non‐excitable cells. Although TRP channels were for a long time considered to be voltage independent, several TRP channels now appear to be weakly voltage dependent with an activation curve extending mainly into the non‐physiological positive voltage range. In connection with this voltage dependence, there is now abundant evidence that physical stimuli, such as temperature (TRPV1, TRPM8, TRPV3), or the binding of various ligands (TRPV1, TRPV3, TRPM8, TRPM4), shift this voltage dependence towards physiologically relevant potentials, a mechanism that may represent the main functional hallmark of these TRP channels. This review discusses some features of voltage‐dependent gating of TRPV1, TRPM4 and TRPM8. A thermodynamic principle is elaborated, which predicts that the small gating charge of TRP channels is a crucial factor for the large voltage shifts induced by various stimuli. Some structural considerations will be given indicating that, although the voltage sensor is not yet known, the C‐terminus may substantially change the voltage dependence of these channels.


Journal of Clinical Investigation | 2007

Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding

Thomas Gevaert; Joris Vriens; Andrei Segal; Wouter Everaerts; Tania Roskams; Karel Talavera; Grzegorz Owsianik; Wolfgang Liedtke; Dirk Daelemans; Ilse Dewachter; Fred Van Leuven; Thomas Voets; Dirk De Ridder; Bernd Nilius

Here we provide evidence for a critical role of the transient receptor potential cation channel, subfamily V, member 4 (TRPV4) in normal bladder function. Immunofluorescence demonstrated TRPV4 expression in mouse and rat urothelium and vascular endothelium, but not in other cell types of the bladder. Intracellular Ca2+ measurements on urothelial cells isolated from mice revealed a TRPV4-dependent response to the selective TRPV4 agonist 4alpha-phorbol 12,13-didecanoate and to hypotonic cell swelling. Behavioral studies demonstrated that TRPV4-/- mice manifest an incontinent phenotype but show normal exploratory activity and anxiety-related behavior. Cystometric experiments revealed that TRPV4-/- mice exhibit a lower frequency of voiding contractions as well as a higher frequency of nonvoiding contractions. Additionally, the amplitude of the spontaneous contractions in explanted bladder strips from TRPV4-/- mice was significantly reduced. Finally, a decreased intravesical stretch-evoked ATP release was found in isolated whole bladders from TRPV4-/- mice. These data demonstrate a previously unrecognized role for TRPV4 in voiding behavior, raising the possibility that TRPV4 plays a critical role in urothelium-mediated transduction of intravesical mechanical pressure.


Nature Neuroscience | 2009

Nicotine activates the chemosensory cation channel TRPA1.

Karel Talavera; Maarten Gees; Yuji Karashima; Víctor M. Meseguer; Jeroen Vanoirbeek; Nils Damann; Wouter Everaerts; Melissa Benoit; Annelies Janssens; Rudi Vennekens; Félix Viana; Benoit Nemery; Bernd Nilius; Thomas Voets

Topical application of nicotine, as used in nicotine replacement therapies, causes irritation of the mucosa and skin. This reaction has been attributed to activation of nicotinic acetylcholine receptors (nAChRs) in chemosensory neurons. In contrast with this view, we found that the chemosensory cation channel transient receptor potential A1 (TRPA1) is crucially involved in nicotine-induced irritation. We found that micromolar concentrations of nicotine activated heterologously expressed mouse and human TRPA1. Nicotine acted in a membrane-delimited manner, stabilizing the open state(s) and destabilizing the closed state(s) of the channel. In the presence of the general nAChR blocker hexamethonium, nociceptive neurons showed nicotine-induced responses that were strongly reduced in TRPA1-deficient mice. Finally, TRPA1 mediated the mouse airway constriction reflex to nasal instillation of nicotine. The identification of TRPA1 as a nicotine target suggests that existing models of nicotine-induced irritation should be revised and may facilitate the development of smoking cessation therapies with less adverse effects.


Trends in Neurosciences | 2008

Neuronal TRP channels: thermometers, pathfinders and life-savers.

Karel Talavera; Bernd Nilius; Thomas Voets

Cation channels of the TRP superfamily are widely expressed in the nervous system, and important progress has been made in elucidating the gating properties and physiological roles of neuronal TRPs. Recent studies have firmly established the role of temperature-sensitive TRPs (thermoTRPs) as the principal molecular thermometers in the peripheral sensory system, and provided the first molecular insight into the mechanisms underlying the exquisite thermo- and chemosensitivity of these channels. Moreover, accumulating evidence implicates TRP channels in the development of the central nervous system. In particular, Ca(2+) influx via TRPC channels appears to be a critical component of the signalling cascade that mediates the guidance of growth cones and survival of neurons in response to chemical cues such as neurotrophins or Netrin-1.


Nature Communications | 2014

TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins.

Víctor M. Meseguer; Yeranddy A. Alpizar; Enoch Luis; Sendoa Tajada; Bristol Denlinger; Otto Fajardo; Jan Albert Manenschijn; Carlos Fernández-Peña; Arturo Talavera; Tatiana Kichko; Belén Navia; Alicia Sanchez; Rosa Señarís; Peter W. Reeh; María Teresa Pérez-García; José R. López-López; Thomas Voets; Carlos Belmonte; Karel Talavera; Félix Viana

Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.


Current Biology | 2011

The Capsaicin Receptor TRPV1 Is a Crucial Mediator of the Noxious Effects of Mustard Oil

Wouter Everaerts; Maarten Gees; Yeranddy A. Alpizar; Ricard Farré; Cindy Leten; Aurelia Apetrei; Ilse Dewachter; Fred Van Leuven; Rudi Vennekens; Dirk De Ridder; Bernd Nilius; Thomas Voets; Karel Talavera

Mustard oil (MO) is a plant-derived irritant that has been extensively used in experimental models to induce pain and inflammation. The noxious effects of MO are currently ascribed to specific activation of the cation channel TRPA1 in nociceptive neurons. In contrast to this view, we show here that the capsaicin receptor TRPV1 has a surprisingly large contribution to aversive and pain responses and visceral irritation induced by MO. Furthermore, we found that this can be explained by previously unknown properties of this compound. First, MO has a bimodal effect on TRPA1, producing current inhibition at millimolar concentrations. Second, it directly and stably activates mouse and human recombinant TRPV1, as well as TRPV1 channels in mouse sensory neurons. Finally, physiological temperatures enhance MO-induced TRPV1 stimulation. Our results refute the dogma that TRPA1 is the sole nocisensor for MO and motivate a revision of the putative roles of these channels in models of MO-induced pain and inflammation. We propose that TRPV1 has a generalized role in the detection of irritant botanical defensive traits and in the coevolution of multiple mammalian and plant species.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice

Barbara Colsoul; Anica Schraenen; Katleen Lemaire; Roel Quintens; Leentje Van Lommel; Andrei Segal; Grzegorz Owsianik; Karel Talavera; Thomas Voets; Robert F. Margolskee; Zaza Kokrashvili; Patrick Gilon; Bernd Nilius; Frans Schuit; Rudi Vennekens

Glucose homeostasis is critically dependent on insulin release from pancreatic β-cells, which is strictly regulated by glucose-induced oscillations in membrane potential (Vm) and the cytosolic calcium level ([Ca2+]cyt). We propose that TRPM5, a Ca2+-activated monovalent cation channel, is a positive regulator of glucose-induced insulin release. Immunofluorescence revealed expression of TRPM5 in pancreatic islets. A Ca2+-activated nonselective cation current with TRPM5-like properties is significantly reduced in Trpm5−/− cells. Ca2+-imaging and electrophysiological analysis show that glucose-induced oscillations of Vm and [Ca2+]cyt have on average a reduced frequency in Trpm5−/− islets, specifically due to a lack of fast oscillations. As a consequence, glucose-induced insulin release from Trpm5−/− pancreatic islets is significantly reduced, resulting in an impaired glucose tolerance in Trpm5−/− mice.

Collaboration


Dive into the Karel Talavera's collaboration.

Top Co-Authors

Avatar

Thomas Voets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bernd Nilius

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Yeranddy A. Alpizar

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wouter Everaerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Maarten Gees

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rudi Vennekens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Annelies Janssens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Brett Boonen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Dirk De Ridder

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Alicia Sanchez

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge