Karen A. Detillieux
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen A. Detillieux.
Heart Failure Reviews | 2007
Elissavet Kardami; Karen A. Detillieux; Xin Ma; Zhisheng Jiang; Jon-Jon Santiago; Sarah K. Jimenez; Peter A. Cattini
Boosting myocardial resistance to acute as well as chronic ischemic damage would ameliorate the detrimental effects of numerous cardiac pathologies and reduce the probability of transition to heart failure. Experimental cardiology has pointed to ischemic and pharmacological pre- as well as post-conditioning as potent acute cardioprotective manipulations. Additional exciting experimental strategies include the induction of true regenerative and/or angiogenic responses to the damaged heart, resulting in sustained structural and functional beneficial effects. Fibroblast growth factor-2 (FGF-2), an endogenous multifunctional protein with strong affinity for the extracellular matrix and basal lamina and well-documented paracrine, autocrine and intacellular modes of action, has been shown over the years to exert acute and direct pro-survival effects, irrespectively of whether it is administered before, during or after an ischemic insult to the heart. FGF-2 is also a potent angiogenic protein and a crucial agent for the proliferation, expansion, and survival of several cell types including those with stem cell properties. Human clinical trials have pointed to a good safety record for this protein. In this review, we will present a case for the low molecular weight isoform of fibroblast growth factor-2 (lo-FGF-2) as a very promising therapeutic agent to achieve powerful acute as well as sustained benefits for the heart, due to its cytoprotective and regenerative properties.
Biochemical and Biophysical Research Communications | 2008
Shun Yan Lu; Farah Sheikh; Patricia C. Sheppard; Agnes Fresnoza; Mary Lynn Duckworth; Karen A. Detillieux; Peter A. Cattini
Fibroblast growth factor 16 (FGF-16) expression has previously been detected in mouse heart at mid-gestation in the endocardium and epicardium, suggesting a role in embryonic heart development. More specifically, exogenously applied FGF-16 has been shown to stimulate growth of embryonic myocardial cells in tissue explants. We have generated mice lacking FGF-16 by targeting the Fgf16 locus on the X chromosome. Elimination of Fgf16 expression resulted in embryonic death as early as day 11.5 (E11.5). External abnormalities, including hemorrhage in the heart and ventral body region as well as facial defects, began to appear in null embryos from E11.5. Morphological analysis of FGF-16 null hearts revealed cardiac defects including chamber dilation, thinning of the atrial and ventricular walls, and poor trabeculation, which were visible at E10.5 and more pronounced at E11.5. These findings indicate FGF-16 is required for embryonic heart development in mid-gestation through its positive effect on myocardial growth.
American Journal of Physiology-cell Physiology | 2008
Shun Yan Lu; David P. Sontag; Karen A. Detillieux; Peter A. Cattini
FGF-16 has been reported to be preferentially expressed in the adult rat heart. We have investigated the expression of FGF-16 in the perinatal and postnatal heart and its functional significance in neonatal rat cardiac myocytes. FGF-16 mRNA accumulation was observed by quantitative RT-PCR between neonatal days 1 and 7, with this increased expression persisting into adulthood. FGF-2 has been shown to increase neonatal rat cardiac myocyte proliferative potential via PKC activation. Gene array analysis revealed that FGF-16 inhibited the upregulation by FGF-2 of cell cycle promoting genes including cyclin F and Ki67. Furthermore, the CDK4/6 inhibitor gene Arf/INK4A was upregulated with the combination of FGF-16 and FGF-2 but not with either factor on its own. The effect on Ki67 was validated by protein immunodetection, which also showed that FGF-16 significantly decreased FGF-2-induced Ki67 labeling of cardiac myocytes, although it alone had no effect on Ki67 labeling. Inhibition of p38 MAPK potentiated cardiac myocyte proliferation induced by FGF-2 but did not alter the inhibitory action of FGF-16. Receptor binding assay showed that FGF-16 can compete with FGF-2 for binding sites including FGF receptor 1. FGF-16 had no effect on activated p38, ERK1/2, or JNK/SAPK after FGF-2 treatment. However, FGF-16 inhibited PKC-alpha and PKC-epsilon activation induced by FGF-2 and, importantly, IGF-1. Collectively, these data suggest that expression and release of FGF-16 in the neonatal myocardium interfere with cardiac myocyte proliferative potential by altering the local signaling environment via modulation of PKC activation and cell cycle-related gene expression.
Placenta | 2009
Yan Jin; Shun Yan Lu; Agnes Fresnoza; Karen A. Detillieux; Mary Lynn Duckworth; Peter A. Cattini
The human (h) growth hormone/chorionic somatomammotropin (GH/CS) gene locus presents a unique model to gain insight into the molecular mechanisms that have allowed a closely related family of genes to be expressed in two distinct cell lineages/tissues: pituitary somatotrophs and placental syncytiotrophoblasts. However, studies of external factors that regulate gene expression have been somewhat limited by (i) a lack of human cell lines expressing endogenous GH or CS appropriately; and (ii) the fact that the GH/CS locus is unique to primates and thus does not exist in rodents. In the current study, a transgenic (171 h GH/CS-TG) mouse was generated containing the intact hGH/CS gene cluster and hGH locus control region (LCR) in a 171-kilobase DNA fragment. Pituitary and placental-specific expression of hGH/CS RNA was detected at embryonic day (E) 18.5. Immunostaining of hGH was seen in somatotrophs of the anterior pituitary beginning in late gestation. The presence of hCS protein was detected in the placental labyrinth in trophoblasts functionally analogous to the syncytiotrophoblast of the chorionic villi. This pattern of gene expression is consistent with the presence of essential components of the hGH/CS LCR. Transcript levels for hCS-A, hCS-B and placental hGH-variant increased in 171 hGH/CS-TG placenta during gestation (E11.5-E18.5), as previously observed in human placental development. Throughout gestation, hCS-A RNA levels were proportionately higher, accounting for 91% of total CS RNA by E18.5, comparable to term human placenta. Finally, the previous correlation between the transcription factor AP-2alpha and hCS RNA expression observed in developing primary human cytotrophoblast cultures, was extended to pregnancy in the 171 hGH/CS-TG mouse. The 171 hGH/CS-TG mouse thus provides a model to investigate hGH/CS gene expression, including in pregnancy.
American Journal of Physiology-heart and Circulatory Physiology | 1999
Karen A. Detillieux; Johanna T. A. Meij; Elissavet Kardami; Peter A. Cattini
Fibroblast growth factor (FGF-2), a mitogenic, angiogenic, and cardioprotective agent, is reported to be released from the postnatal heart by a mechanism of transient remodeling of the sarcolemma during contraction. This release can be increased with adrenergic stimulation. RNA blotting was used to assess whether FGF-2 synthesis in neonatal rat cardiomyocytes might also be regulated by adrenergic stimulation. FGF-2 RNA levels were increased after treatment with norepinephrine for 6 h or with the α-adrenergic agonist phenylephrine for 48 h. To assess an effect on transcription, neonatal rat cardiomyocytes were transfected with a hybrid rat FGF-2 promoter/luciferase gene (-1058FGFp. luc) and treated with norepinephrine or phenylephrine for 6 or 48 h, respectively. FGF-2 promoter activity was increased two- to sevenfold in an α1-specific manner. Putative phenylephrine-responsive elements (PEREs) were identified at positions -780 and -761 relative to a major transcription initiation site. However, deletion analysis of -1058FGFp. luc showed that the phenylephrine response was independent of the putative PEREs, cell contraction, and Ca2+ influx. In transgenic mice expressing -1058FGFp. luc, a significant three- to sevenfold stimulation of FGF-2 promoter activity was detected in the hearts of two independent lines 6 h after intraperitoneal administration of phenylephrine (50 mg/kg). This increase was still apparent at 24 h but was not detected at 48 h posttreatment. Analysis of FGF-2 mRNA in normal mouse hearts revealed accumulation of the 6.1-kb transcript at 24 h. Control of local FGF-2 synthesis at the transcriptional level through adrenergic stimulation may be important in the response to injury as well as in the maintenance of a healthy myocardium.
FEBS Letters | 2016
Lawrence O'Leary; Kenan Sevinç; Ilektra M Papazoglou; Bernadette Tildy; Karen A. Detillieux; Andrew J. Halayko; Kian Fan Chung; Mark M. Perry
Chronic obstructive pulmonary disease (COPD) is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease, in part caused by the aberrant function of airway smooth muscle (ASM) cells under the regulation of transforming growth factor (TGF)‐β. miRNA are short, noncoding gene transcripts involved in the negative regulation of specific target genes, through their interactions with mRNA. Previous studies have proposed that mRNA‐145 (miR‐145) may interact with SMAD3, an important downstream signalling molecule of the TGF‐β pathway. TGF‐β was used to stimulate primary human ASM cells isolated from healthy nonsmokers, healthy smokers and COPD patients. This resulted in a TGF‐β‐dependent increase in CXCL8 and IL‐6 release, most notably in the cells from COPD patients. TGF‐β stimulation increased SMAD3 expression, only in cells from COPD patients, with a concurrent increased miR‐145 expression. Regulation of miR‐145 was found to be negatively controlled by pathways involving the MAP kinases, MEK‐1/2 and p38 MAPK. Subsequent, overexpression of miR‐145 (using synthetic mimics) in ASM cells from patients with COPD suppressed IL‐6 and CXCL8 release, to levels comparable to the nonsmoker controls. Therefore, this study suggests that miR‐145 negatively regulates pro‐inflammatory cytokine release from ASM cells in COPD by targeting SMAD3.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2014
Min Hyung Ryu; Aruni Jha; Oluwaseun O. Ojo; Thomas H. Mahood; Sujata Basu; Karen A. Detillieux; Neda Nikoobakht; Charles S. Wong; Mark Loewen; Allan B. Becker; Andrew J. Halayko
Emerging epidemiological evidence reveals a link between lung disease and exposure to indoor pollutants such as perfluorinated compounds (PFCs). PFC exposure during critical developmental stages may increase asthma susceptibility. Thus, in a murine model, we tested the hypothesis that early life and continued exposure to two ubiquitous household PFCs, perfluorooctanoic acid (PFOA) and perflurooctanesulfonic acid (PFOS), can induce lung dysfunction that exacerbates allergen-induced airway hyperresponsiveness (AHR) and inflammation. Balb/c mice were exposed to PFOA or PFOS (4 mg/kg chow) from gestation day 2 to 12 wk of age by feeding pregnant and nursing dams, and weaned pups. Some pups were also sensitized and challenged with ovalbumin (OVA). We assessed lung function and inflammatory cell and cytokine expression in the lung and examined bronchial goblet cell number. PFOA, but not PFOS, without the OVA sensitization/challenge induced AHR concomitant with a 25-fold increase of lung macrophages. PFOA exposure did not affect OVA-induced lung inflammatory cell number. In contrast, PFOS exposure inhibited OVA-induced lung inflammation, decreasing total cell number in lung lavage by 68.7%. Interferon-γ mRNA in the lung was elevated in all PFC-exposed groups. Despite these effects, neither PFOA nor PFOS affected OVA-induced AHR. Our data do not reveal PFOA or PFOS exposure as a risk factor for more severe allergic asthma-like symptoms, but PFOA alone can induce airway inflammation and alter airway function.
Neuroendocrinology | 2006
Peter A. Cattini; Xiaoyang Yang; Yan Jin; Karen A. Detillieux
The somatic cells of a multicellular organism contain an identical complement of genes that need to be expressed specifically and appropriately to allow the normal development and functions associated with an organism. In the eukaryotic cell nucleus, genes are packaged with nucleoprotein histones into chromatin. The human growth hormone (GH)/chorionic somatomammotropin (CS) gene family offers an excellent model to study the relationship between chromatin structure and transcription factor binding in terms of tissue-specific gene expression. The GH/CS gene family consists of five genes (GH-N, GH-V, CS-A, CS-B and CS-L), contained in a single locus on chromosome 17. Although they share approximately 94% sequence similarity, GH-N expression is restricted to pituitary somatotropes while the four placental GH/CS genes are expressed in the villus syncytiotrophoblast. Appropriate expression in vivo is dependent on remote sequences found 14–32 kb upstream of GH-N in the loci of adjacent genes, and these sequences are characterized by five (I–V) nuclease-hypersensitive sites (HS). Pituitary-specific factor Pit-1 binds at HS I/II and plays an essential role in chromatin remodeling and GH-N expression; however, the processes that lead to HS I/II accessibility are unknown. We discuss the possibility that Pit-1-driven remodeling at HS III may precede that at HS I/II in the pituitary. Also, in pituitary chromatin, all five GH/CS genes share similar nuclease sensitivity, suggesting that the conformation of the placental genes is not inhibitory to transcription. Given that the promoters of both GH-N and the placental GH/CS genes contain Pit-1-binding sites, possible mechanisms to restrict placenta GH/CS promoter activity in the pituitary are discussed, including active repression via P sequences located upstream of each of the placental GH/CS genes. Positively or negatively influencing those components known to be important for pituitary transcription may link epigenetic events to key transcription factors in the overall picture of tissue-specific control of gene expression.
Cardiovascular Research | 2010
Alina G. Sofronescu; Karen A. Detillieux; Peter A. Cattini
AIMS The fibroblast growth factor (FGF) family plays an important role in cardiac growth and development. However, only FGF-16 RNA levels are reported to increase during the perinatal period and to be expressed preferentially in the myocardium, suggesting control at the transcriptional level and a role for FGF-16 in the postnatal heart. Beyond the identification of two TATA-like elements (TATA1 and TATA2) in the mouse FGF-16 promoter region and the preferential cardiac activity of TATA2, there is no report of Fgf-16 gene regulation. Assessment of promoter sequences, however, reveals putative nuclear factor-kappaB (NF-kappaB) elements, suggesting that Fgf-16 is regulated via NF-kappaB activation and thereby implicated in a number of cardiac events. Thus, the Fgf-16 gene was investigated as a target for NF-kappaB activation in cardiac cells. METHODS AND RESULTS Assessments of Fgf-16 promoter activity were made using truncated and transfected hybrid genes with NF-kappaB inhibitors and/or beta-adrenergic stimulation via isoproterenol (IsP) treatment (a known NF-kappaB activator) in culture, and on endogenous mouse and human Fgf-16 genes in situ. The mouse Fgf-16 promoter region was stimulated in response to IsP treatment, but this response was lost with NF-kappaB inhibitor pretreatment. Deletion analysis revealed IsP responsiveness linked to sequences between TATA2 and TATA1 and, more specifically, a NF-kappaB element upstream and adjacent to TATA1 that associates with NF-kappaB p50/p65 subunits in chromatin. Finally, TATA1 and the proximal NF-kappaB element are conserved in the human genome and responsive to IsP. CONCLUSION The mouse and human Fgf-16 gene is a target for NF-kappaB activation in the postnatal heart.
Molecular and Cellular Biochemistry | 1998
Karen A. Detillieux; Adrienne F. A. Meyers; Johanna T. A. Meij; Peter A. Cattini
We have cloned the rat fibroblast growth factor-2 (FGF-2) promoter region including 1058 base pairs (bp) of 5′-flanking DNA. Complete sequencing of this promoter region revealed a 74 bp domain between nucleotides -793 and -720 that was greater than 97% A/G-rich. A repeat of the sequence 5′-AGGGAGGG-3′ separated by 11 bp was located at the core of this domain. A 37 bp A/G-rich oligonucleotide containing these AGGG-repeat sequences was synthesised, and tested for function on a minimal herpes simplex virus thymidine kinase (TK) promoter, fused to the firefly luciferase gene (TKp.luc), in transiently transfected neonatal rat cardiac myocytes. Promoter activity was stimulated ~3 fold in the presence of AGGG-repeat sequences. This effect was neither tissue or species-specific since TK promoter activity was increased ~11 fold in both rat and human glial tumor cells. Four specific complexes (C14) were detected between neonatal rat heart nuclear proteins and the 37 bp A/G-rich oligonucleotide by gel mobility shift assay. Competition with excess unlabelled 37 bp A/G-rich oligonucleotide revealed that two complexes represented very high affinity/specificity interactions (C2 > C4) while C1 and C3 were of lower affinity. As a result, competition with up to a 25 fold molar excess of 37 bp A/G-rich oligonucleotide led to the loss of C2 and C4, and a corresponding and transient increase in the levels of C1 and C3, which themselves were reduced with more competitor oligonucleotide. The AGGG-repeat resembles the 5′-gGGGAGGG-3′ sequence previously implicated in the response of the atrial natriuretic factor promoter to the α-adrenergic agonist, phenylephrine. Although an additional 1.5 fold increase in TK promoter activity was detected in the presence of the 37 bp A/G-rich oligonucleotide with phenylephrine treatment of transfected myocytes, this effect was not statistically significant. Furthermore, there was no difference in the gel mobility shift (C14) pattern obtained with the 37 bp A/G-rich oligonucleotide and nuclear protein isolated from neonatal rat cardiac myocytes grown in the presence or absence of norepinephrine. These data suggest that the A/G rich sequences in the rat FGF-2 gene 5′-flanking DNA, including the AGGG-repeat, are able to confer stimulatory activity on a promoter in a tissue- and species-independent manner, but alone are not able to induce a significant phenylephrine response in neonatal rat cardiac myocytes.