Karen A. Esmonde-White
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen A. Esmonde-White.
Nature Protocols | 2016
Holly J. Butler; Lorna Ashton; Benjamin Bird; Gianfelice Cinque; Kelly Curtis; Jennifer Dorney; Karen A. Esmonde-White; Nigel J. Fullwood; Benjamin Gardner; Pierre L. Martin-Hirsch; Michael J. Walsh; Martin R. McAinsh; Nicholas Stone; Francis L. Martin
Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis.
Analyst | 2011
Karen A. Esmonde-White; Francis W. L. Esmonde-White; Michael D. Morris; Blake J. Roessler
In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber-optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where the contrast is based on the molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber-optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate the proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies.
Applied Spectroscopy | 2011
Francis W. L. Esmonde-White; Karen A. Esmonde-White; Michael D. Morris
Projective transformation is a mathematical correction (implemented in software) used in the remote imaging field to produce distortion-free images. We present the application of projective transformation to correct minor alignment and astigmatism distortions that are inherent in dispersive spectrographs. Patterned white-light images and neon emission spectra were used to produce registration points for the transformation. Raman transects collected on microscopy and fiber-optic systems were corrected using established methods and compared with the same transects corrected using the projective transformation. Even minor distortions have a significant effect on reproducibility and apparent fluorescence background complexity. Simulated Raman spectra were used to optimize the projective transformation algorithm. We demonstrate that the projective transformation reduced the apparent fluorescent background complexity and improved reproducibility of measured parameters of Raman spectra. Distortion correction using a projective transformation provides a major advantage in reducing the background fluorescence complexity even in instrumentation where slit-image distortions and camera rotation were minimized using manual or mechanical means. We expect these advantages should be readily applicable to other spectroscopic modalities using dispersive imaging spectrographs.
Biomedical Optics Express | 2015
Jennifer Lynn Demers; Francis W. L. Esmonde-White; Karen A. Esmonde-White; Michael D. Morris; Brian W. Pogue
Combining diffuse optical tomography methods with Raman spectroscopy of tissue provides the ability for in vivo measurements of chemical and molecular characteristics, which have the potential for being useful in diagnostic imaging. In this study a system for Raman tomography was developed and tested. A third generation microCT coupled system was developed to combine 10 detection fibers and 5 excitation fibers with laser line filtering and a Cytop reference signal. Phantom measurements of hydroxyapatite concentrations from 50 to 300 mg/ml had a linear response. Fiber placement and experiment design was optimized using cadaver animals with live animal measurements acquired to validate the systems capabilities. Promising results from the initial animal experiments presented here, pave the way for a study of longitudinal measurements during fracture healing and the scaling of the Raman tomography system towards human measurements.
Analytical and Bioanalytical Chemistry | 2017
Karen A. Esmonde-White; Maryann Cuellar; Carsten Uerpmann; Bruno Lenain; Ian R. Lewis
Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product’s lifecycle.
Applied Spectroscopy | 2008
Karen A. Esmonde-White; Stéphanie V. Le Clair; Blake J. Roessler; Michael D. Morris
Biofluids are complex solutions consisting of small ions and large biopolymers such as DNA, proteins, or proteoglycans. Biopolymers affect fluid properties but their effect on drop deposition has not been examined. Hyaluronic acid (HA), an important component in synovial fluid, was chosen as a model biopolymer, and examined using surface-enhanced Raman spectroscopy (SERS). Nanoliter volumes of HA solutions were dried onto a patterned SERS substrate and spectra were collected from the dried hyaluronic acid drops with a near-infrared Raman microscope. Characteristic hyaluronic acid bands were examined. Capillary viscometry measured properties of HA solutions, and entanglement behavior was also modeled using scaling theory principles. Viscosity measurements were incorporated into models of suspended particle droplets to account for the effect of inter-chain attraction on droplet formation. Microscope images were used to evaluate the shape of the dried drop. Relative drop thickness was estimated from concentric rings found at drop edges using established models of light interference by thin films. We found SERS spectra were sensitive not only to polymer conformation, but also to type of deposition (ring versus uniform), and the thickness of the resulting deposition. These data suggest an approach to elucidate the effects of biopolymers and dehydrated biofluids on SERS analysis.
Analyst | 2011
Francis W. L. Esmonde-White; Karen A. Esmonde-White; Matthew R. Kole; Steven A. Goldstein; Blake J. Roessler; Michael D. Morris
To support the translation of Raman spectroscopy into clinical applications, synthetic models are needed to accurately test, optimize and validate prototype fiber optic instrumentation. Synthetic models (also called tissue phantoms) are widely used for developing and testing optical instrumentation for diffuse reflectance, fluorescence, and Raman spectroscopies. While existing tissue phantoms accurately model tissue optical scattering and absorption, they do not typically model the anatomic shapes and chemical composition of tissue. Because Raman spectroscopy is sensitive to molecular composition, Raman tissue phantoms should also approximate the bulk tissue composition. We describe the fabrication and characterization of tissue phantoms for Raman tomography and spectroscopy. These phantoms have controlled chemical and optical properties, and also multilayer morphologies which approximate the appropriate anatomic shapes. Tissue phantoms were fabricated to support on-going Raman studies by simulating the human wrist and rat leg. Surface meshes (triangle patch models) were generated from computed tomography (CT) images of a human arm and rat leg. Rapid prototyping was used to print mold templates with complex geometric patterns. Plastic casting techniques used for movie special effects were adapted to fabricate molds from the rapid prototypes, and finally to cast multilayer gelatin tissue phantoms. The gelatin base was enriched with additives to model the approximate chemistry and optical properties of individual tissue layers. Additional studies were performed to determine optimal casting conditions, phantom stability, layer delamination and chemical diffusion between layers. Recovery of diffuse reflectance and Raman spectra in tissue phantoms varied with probe placement. These phantoms enable optimization of probe placement for human or rat studies. These multilayer tissue phantoms with complex geometries are shown to be stable, with minimal layer delamination and chemical diffusion.
Applied Spectroscopy | 2014
Karen A. Esmonde-White
Tendon, ligament, and joint tissues are important in maintaining daily function. They can be affected by disease, age, and injury. Slow tissue turnover, hierarchical structure and function, and nonlinear mechanical properties present challenges to diagnosing and treating soft musculoskeletal tissues. Understanding these tissues in health, disease, and injury is important to improving pharmacologic and surgical repair outcomes. Raman spectroscopy is an important tool in the examination of soft musculoskeletal tissues. This article highlights exciting basic science and clinical/translational Raman studies of cartilage, tendon, and ligament.
Analyst | 2014
Karen A. Esmonde-White; Francis W. L. Esmonde-White; Michael D. Morris; Blake J. Roessler
Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50-90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50-90°, a ring-shaped deposit was formed. Analysis of the drying drops geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques.
Bone | 2016
Megan E. Oest; Bo Gong; Karen A. Esmonde-White; Kenneth A. Mann; Nicholas D. Zimmerman; Timothy A. Damron; Michael D. Morris
As part of our ongoing efforts to understand underlying mechanisms contributing to radiation-associated bone fragility and to identify possible treatments, we evaluated the longitudinal effects of parathyroid hormone (PTH) treatment on bone quality in a murine model of limited field irradiation. We hypothesized PTH would mitigate radiation-induced changes in the chemical composition and structure of bone, as measured by microscope-based Raman spectroscopy. We further hypothesized that collagen crosslinking would be especially responsive to PTH treatment. Raman spectroscopy was performed on retrieved tibiae (6-7/group/time point) to quantify metrics associated with bone quality, including: mineral-to-matrix ratio, carbonate-to-phosphate ratio, mineral crystallinity, collagen crosslink (trivalent:divalent) ratio, and the mineral and matrix depolarization ratios. Irradiation disrupted the molecular structure and orientation of bone collagen, as evidenced by a higher collagen crosslink ratio and lower matrix depolarization ratio (vs. non-irradiated control bones), persisting until 12weeks post-irradiation. Radiation transiently affected the mineral phase, as evidenced by increased mineral crystallinity and mineral-to-matrix ratio at 4weeks compared to controls. Radiation decreased bone mineral depolarization ratios through 12weeks, indicating increased mineral alignment. PTH treatment partially attenuated radiation-induced increases in collagen crosslink ratio, but did not restore collagen or mineral alignment. These post-radiation matrix changes are consistent with our previous studies of radiation damage to bone, and suggest that the initial radiation damage to bone matrix has extensive effects on the quality of tissue deposited thereafter. In addition to maintaining bone quality, preventing initial radiation damage to the bone matrix (i.e. crosslink ratio, matrix orientation) may be critical to preventing late-onset fragility fractures.