Karen A. Ryall
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen A. Ryall.
Journal of Biological Chemistry | 2014
Rhianna C. Laker; Peng Xu; Karen A. Ryall; Alyson Sujkowski; Brandon M. Kenwood; Kristopher H. Chain; Mei Zhang; Mary Anne Royal; Kyle L. Hoehn; Monica Driscoll; Paul N. Adler; Robert J. Wessells; Jeffrey J. Saucerman; Zhen Yan
Background: Mitochondrial health is difficult to assess in vivo. Results: We have generated a reporter gene, MitoTimer, which targets mitochondria, and fluoresces green and shifts to red when oxidized, for assessment of mitochondrial content, structure, stress, and damage under physiological and pathological conditions. Conclusion: MitoTimer is useful for assessment of mitochondrial health in vivo. Significance: MitoTimer could advance mitochondrial research in multiple disciplines. Mitochondrial dysfunction plays important roles in many diseases, but there is no satisfactory method to assess mitochondrial health in vivo. Here, we engineered a MitoTimer reporter gene from the existing Timer reporter gene. MitoTimer encodes a mitochondria-targeted green fluorescent protein when newly synthesized, which shifts irreversibly to red fluorescence when oxidized. Confocal microscopy confirmed targeting of the MitoTimer protein to mitochondria in cultured cells, Caenorhabditis elegans touch receptor neurons, Drosophila melanogaster heart and indirect flight muscle, and mouse skeletal muscle. A ratiometric algorithm revealed that conditions that cause mitochondrial stress led to a significant shift toward red fluorescence as well as accumulation of pure red fluorescent puncta of damaged mitochondria targeted for mitophagy. Long term voluntary exercise resulted in a significant fluorescence shift toward green, in mice and D. melanogaster, as well as significantly improved structure and increased content in mouse FDB muscle. In contrast, high-fat feeding in mice resulted in a significant shift toward red fluorescence and accumulation of pure red puncta in skeletal muscle, which were completely ameliorated by voluntary wheel running. Hence, MitoTimer allows for robust analysis of multiple parameters of mitochondrial health under both physiological and pathological conditions and will be highly useful for future research of mitochondrial health in multiple disciplines in vivo.
Journal of Biological Chemistry | 2012
Karen A. Ryall; David O. Holland; Kyle A. Delaney; Matthew J. Kraeutler; Audrey J. Parker; Jeffrey J. Saucerman
Background: Little is known about how global signaling network properties influence cardiac myocyte hypertrophy. Results: New 106 species computational model exhibited enriched cross-talk motifs and modular organization, predicting Ras as the most influential hub. Conclusion: Multiple levels of network organization modulate hypertrophic outcomes. Significance: Rather than acting through isolated pathways, cardiac hypertrophy signaling is a highly integrated network. Cardiac hypertrophy is managed by a dense web of signaling pathways with many pathways influencing myocyte growth. A quantitative understanding of the contributions of individual pathways and their interactions is needed to better understand hypertrophy signaling and to develop more effective therapies for heart failure. We developed a computational model of the cardiac myocyte hypertrophy signaling network to determine how the components and network topology lead to differential regulation of transcription factors, gene expression, and myocyte size. Our computational model of the hypertrophy signaling network contains 106 species and 193 reactions, integrating 14 established pathways regulating cardiac myocyte growth. 109 of 114 model predictions were validated using published experimental data testing the effects of receptor activation on transcription factors and myocyte phenotypic outputs. Network motif analysis revealed an enrichment of bifan and biparallel cross-talk motifs. Sensitivity analysis was used to inform clustering of the network into modules and to identify species with the greatest effects on cell growth. Many species influenced hypertrophy, but only a few nodes had large positive or negative influences. Ras, a network hub, had the greatest effect on cell area and influenced more species than any other protein in the network. We validated this model prediction in cultured cardiac myocytes. With this integrative computational model, we identified the most influential species in the cardiac hypertrophy signaling network and demonstrate how different levels of network organization affect myocyte size, transcription factors, and gene expression.
Developmental Neuroscience | 2010
Maryam Y. Naim; Stuart H. Friess; Colin Smith; Jill Ralston; Karen A. Ryall; Mark A. Helfaer; Susan S. Margulies
For stroke and spinal cord injury, folic acid supplementation has been shown to enhance neurodevelopment and to provide neuroprotection. We hypothesized that folic acid would reduce brain injury and improve neurological outcome in a neonatal piglet model of traumatic brain injury (TBI), using 4 experimental groups of 3- to 5-day-old female piglets. Two groups were intubated, anesthetized and had moderate brain injury induced by rapid axial head rotation without impact. One group of injured (Inj) animals received folic acid (Fol; 80 µg/kg) by intraperitoneal (IP) injection 15 min following injury, and then daily for 6 days (Inj + Fol; n = 7). The second group of injured animals received an IP injection of saline (Sal) at the same time points (Inj + Sal; n = 8). Two uninjured (Uninj) control groups (Uninj + Fol, n = 8; Uninj + Sal, n = 7) were intubated, anesthetized and received folic acid (80 µg/kg) or saline by IP injection at the same time points as the injured animals following a sham procedure. Animals underwent neurobehavioral and cognitive testing on days 1 and 4 following injury to assess behavior, memory, learning and problem solving. Serum folic acid and homocysteine levels were collected prior to injury and again before euthanasia. The piglets were euthanized 6 days following injury, and their brains were perfusion fixed for histological analysis. Folic acid levels were significantly higher in both Fol groups on day 6. Homocysteine levels were not affected by treatment. On day 1 following injury, the Inj + Fol group showed significantly more exploratory interest, and better motor function, learning and problem solving compared to the Inj + Sal group. Inj + Fol animals had a significantly lower cognitive composite dysfunction score compared to all other groups on day 1. These functional improvements were not seen on day 4 following injury. Axonal injury measured by β-amyloid precursor protein staining 6 days after injury was not affected by treatment. These results suggest that folic acid may enhance early functional recovery in this piglet model of pediatric head injury. This is the first study to describe the application of complex functional testing to assess an intervention outcome in a swine model of TBI.
Nature Communications | 2017
Rhianna C. Laker; Joshua C. Drake; Rebecca J. Wilson; Vitor A. Lira; Bevan M. Lewellen; Karen A. Ryall; Carleigh C. Fisher; Mei Zhang; Jeffrey J. Saucerman; Laurie J. Goodyear; Mondira Kundu; Zhen Yan
Mitochondrial health is critical for skeletal muscle function and is improved by exercise training through both mitochondrial biogenesis and removal of damaged/dysfunctional mitochondria via mitophagy. The mechanisms underlying exercise-induced mitophagy have not been fully elucidated. Here, we show that acute treadmill running in mice causes mitochondrial oxidative stress at 3–12 h and mitophagy at 6 h post-exercise in skeletal muscle. These changes were monitored using a novel fluorescent reporter gene, pMitoTimer, that allows assessment of mitochondrial oxidative stress and mitophagy in vivo, and were preceded by increased phosphorylation of AMP activated protein kinase (Ampk) at tyrosine 172 and of unc-51 like autophagy activating kinase 1 (Ulk1) at serine 555. Using mice expressing dominant negative and constitutively active Ampk in skeletal muscle, we demonstrate that Ulk1 activation is dependent on Ampk. Furthermore, exercise-induced metabolic adaptation requires Ulk1. These findings provide direct evidence of exercise-induced mitophagy and demonstrate the importance of Ampk-Ulk1 signaling in skeletal muscle.Exercise is associated with biogenesis and removal of dysfunctional mitochondria. Here the authors use a mitochondrial reporter gene to demonstrate the occurrence of mitophagy following exercise in mice, and show this is dependent on AMPK and ULK1 signaling.
Journal of Molecular and Cellular Cardiology | 2014
Karen A. Ryall; Vassilios J. Bezzerides; Anthony Rosenzweig; Jeffrey J. Saucerman
Cardiac hypertrophy is controlled by a highly connected signaling network with many effectors of cardiac myocyte size. Quantification of the contribution of individual pathways to specific changes in shape and transcript abundance is needed to better understand hypertrophy signaling and to improve heart failure therapies. We stimulated cardiac myocytes with 15 hypertrophic agonists and quantitatively characterized differential regulation of 5 shape features using high-throughput microscopy and transcript levels of 12 genes using qPCR. Transcripts measured were associated with phenotypes including fibrosis, cell death, contractility, proliferation, angiogenesis, inflammation, and the fetal cardiac gene program. While hypertrophy pathways are highly connected, the agonist screen revealed distinct hypertrophy phenotypic signatures for the 15 receptor agonists. We then used k-means clustering of inputs and outputs to identify a network map linking input modules to output modules. Five modules were identified within inputs and outputs with many maladaptive outputs grouping together in one module: Bax, C/EBPβ, Serca2a, TNFα, and CTGF. Subsequently, we identified mechanisms underlying two correlations revealed in the agonist screen: correlation between regulators of fibrosis and cell death signaling (CTGF and Bax mRNA) caused by AngII; and myocyte proliferation (CITED4 mRNA) and elongation caused by Nrg1. Follow-up experiments revealed positive regulation of Bax mRNA level by CTGF and an incoherent feedforward loop linking Nrg1, CITED4 and elongation. With this agonist screen, we identified the most influential inputs in the cardiac hypertrophy signaling network for a variety of features related to pathological and protective hypertrophy signaling and shared regulation among cardiac myocyte phenotypes.
Journal of Molecular and Cellular Cardiology | 2012
Gregory T. Bass; Karen A. Ryall; Ashwin Katikapalli; Brooks Taylor; Stephen T. Dang; Scott T. Acton; Jeffrey J. Saucerman
Cardiac hypertrophy is controlled by a complex signal transduction and gene regulatory network, containing multiple layers of crosstalk and feedback. While numerous individual components of this network have been identified, understanding how these elements are coordinated to regulate heart growth remains a challenge. Past approaches to measure cardiac myocyte hypertrophy have been manual and often qualitative, hindering the ability to systematically characterize the networks higher-order control structure and identify therapeutic targets. Here, we develop and validate an automated image analysis approach for objectively quantifying multiple hypertrophic phenotypes from immunofluorescence images. This approach incorporates cardiac myocyte-specific optimizations and provides quantitative measures of myocyte size, elongation, circularity, sarcomeric organization, and cell-cell contact. As a proof-of-concept, we examined the hypertrophic response to α-adrenergic, β-adrenergic, tumor necrosis factor (TNFα), insulin-like growth factor-1 (IGF-1), and fetal bovine serum pathways. While all five hypertrophic pathways increased myocyte size, other hypertrophic metrics were differentially regulated, forming a distinct phenotype signature for each pathway. Sarcomeric organization was uniquely enhanced by α-adrenergic signaling. TNFα and α-adrenergic pathways markedly decreased cell circularity due to increased myocyte protrusion. Surprisingly, adrenergic and IGF-1 pathways differentially regulated myocyte-myocyte contact, potentially forming a feed-forward loop that regulates hypertrophy. Automated image analysis unlocks a range of new quantitative phenotypic data, aiding dissection of the complex hypertrophic signaling network and enabling myocyte-based high-content drug screening.
Journal of Molecular and Cellular Cardiology | 2012
Karen A. Ryall; Jeffrey J. Saucerman
Cardiac hypertrophy is controlled by a dense signaling network with many pathways associated with cardiac myocyte growth. New large scale methodology is required to quantitatively characterize the pathways that distinguish reversible forms of hypertrophy from irreversible forms that lead to heart failure. Our automated image acquisition method records 5×5 mosaic images of fluorescent protein-labeled cardiac myocytes within each well of a 96-well plate using an automated stage and focus. Post-processing algorithms automatically identify cell edges, quantify cell phenotypes, and track cells. We uniquely applied our imaging platform to study hypertrophy reversibility in a scalable cell model. Cell area changes after washout of a dose response to the α-adrenergic receptor (αAR) agonist phenylephrine (PE) showed that hypertrophy reverses at low but not high levels of α-adrenergic signaling: a reversibility delay. Perturbations with specialized αAR antagonists, a mathematical model, and live imaging of αAR localization identify the mechanism for this reversibility delay: ligand trapping with internalized PE acting on intracellular αARs.
Journal of Biomechanical Engineering-transactions of The Asme | 2010
Nicole G. Ibrahim; Rahul Natesh; Spencer E. Szczesny; Karen A. Ryall; Stephanie A. Eucker; Brittany Coats; Susan S. Margulies
Head trauma is the leading cause of death and debilitating injury in children. Computational models are important tools used to understand head injury mechanisms but they must be validated with experimental data. In this communication we present in situ measurements of brain deformation during rapid, nonimpact head rotation in juvenile pigs of different ages. These data will be used to validate computational models identifying age-dependent thresholds of axonal injury. Fresh 5 days (n=3) and 4 weeks (n=2) old piglet heads were transected horizontally and secured in a container. The cut surface of each brain was marked and covered with a transparent, lubricated plate that allowed the brain to move freely in the plane of rotation. For each brain, a rapid (20-28 ms) 65 deg rotation was applied sequentially at 50 rad/s, 75 rad/s, and 75 rad/s. Each rotation was digitally captured at 2500 frames/s (480x320 pixels) and mark locations were tracked and used to compute strain using an in-house program in MATLAB. Peak values of principal strain (E(peak)) were significantly larger during deceleration than during acceleration of the head rotation (p<0.05), and doubled with a 50% increase in velocity. E(peak) was also significantly higher during the second 75 rad/s rotation than during the first 75 rad/s rotation (p<0.0001), suggesting structural alteration at 75 rad/s and the possibility that similar changes may have occurred at 50 rad/s. Analyzing only lower velocity (50 rad/s) rotations, E(peak) significantly increased with age (16.5% versus 12.4%, p<0.003), which was likely due to the larger brain mass and smaller viscoelastic modulus of the 4 weeks old pig brain compared with those of the 5 days old. Strain measurement error for the overall methodology was estimated to be 1%. Brain tissue strain during rapid, nonimpact head rotation in the juvenile pig varies significantly with age. The empirical data presented will be used to validate computational model predictions of brain motion under similar loading conditions and to assist in the development of age-specific thresholds for axonal injury. Future studies will examine the brain-skull displacement and will be used to validate brain-skull interactions in computational models.
Methods of Molecular Biology | 2015
Karen A. Ryall; Jeffrey J. Saucerman
Traditional approaches for measuring cardiac myocyte hypertrophy have been of low throughput and subjective, limiting the scope of experimental studies designed to understand it. Here, we describe an automated image acquisition and analysis platform for studying the dynamics of cardiac myocyte hypertrophy in vitro. Image acquisition scripts record 5 × 5 mosaic images of fluorescent protein-labeled neonatal rat ventricular myocytes from each well of a 96-well plate using the microscopes automated stage and focus. Image analysis algorithms automatically segment myocyte boundaries, track myocytes, and quantify changes in shape. We describe each step of the image acquisition and analysis algorithms and provide specific examples of how to implement them using Metamorph and CellProfiler software. With this system, shape dynamics of thousands of individual cardiac myocytes can be tracked for up to a week. This imaging platform was recently applied to study reversal of cardiac myocyte hypertrophy following withdrawal of the α-adrenergic agonist phenylephrine. Hypertrophy readily reversed at low but not high levels of α-adrenergic signaling, leading to identification of an intracellular population of α-adrenergic receptors responsible for this reversibility delay.
Journal of Neurotrauma | 2009
Stuart H. Friess; Rebecca Ichord; Jill Ralston; Karen A. Ryall; Mark A. Helfaer; Colin Smith; Susan S. Margulies