Karen Alvarez-Delfin
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen Alvarez-Delfin.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Karen Alvarez-Delfin; Ann C. Morris; Corey D. Snelson; Joshua T. Gamse; Tripti Gupta; Florence L. Marlow; Mary C. Mullins; Harold A. Burgess; Michael Granato; James M. Fadool
The vertebrate rod and cone photoreceptors are highly specialized sensory neurons that transduce light into the chemical and electrical signals of the nervous system. Although the physiological properties of cones and rods are well known, only a handful of genes have been identified that regulate the specification of photoreceptor subtypes. Taking advantage of the mosaic organization of photoreceptors in zebrafish, we report the isolation of a mutation resulting in a unique change in photoreceptor cell fate. Mutation of the lots-of-rods (lor) locus results in a near one-for-one transformation of UV-cone precursors into rods. The transformed cells exhibit morphological characteristics and a gene-expression pattern typical of rods, but differentiate in a temporal and spatial pattern consistent with UV-cone development. In mutant larvae and adults, the highly ordered photoreceptor mosaic is maintained and degeneration is not observed, suggesting that lor functions after the specification of the other photoreceptor subtypes. In genetic chimeras, lor functions cell-autonomously in the specification of photoreceptor cell fate. Linkage analysis and genetic-complementation testing indicate that lor is an allele of tbx2b/fby (from beyond). fby was identified by a pineal complex phenotype, and carries a nonsense mutation in the T-box domain of the tbx2b transcription factor. Homozygous fby mutant larvae and lor/fby transheterozygotes also display the lots-of-rods phenotype. Based upon these data, we propose a previously undescribed function for tbx2b in photoreceptor cell precursors, to promote the UV cone fate by repressing the rod differentiation pathway.
The Journal of Neuroscience | 2013
Carole J. Saade; Karen Alvarez-Delfin; James M. Fadool
Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry, and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second-order neurons, bipolar cells, and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp25bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes, provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease.
Investigative Ophthalmology & Visual Science | 2015
Scott Taylor; Karen Alvarez-Delfin; Carole J. Saade; Jennifer L. Thomas; Ryan Thummel; James M. Fadool; Peter F. Hitchcock
PURPOSE Photoreceptor genesis in the retina requires precise regulation of progenitor cell competence, cell cycle exit, and differentiation, although information around the mechanisms that govern these events currently is lacking. In zebrafish, the basic helix-loop-helix (bHLH) transcription factor NeuroD governs photoreceptor genesis, but the signaling pathways through which NeuroD functions are unknown. The purpose of this study was to identify these pathways, and during photoreceptor genesis, Notch signaling was investigated as the putative mediator of NeuroD function. METHODS In embryos, genetic mosaic analysis was used to determine if NeuroD functions is cell- or non-cell-autonomous. Morpholino-induced NeuroD knockdown, CRISPR/Cas9 mutation, and pharmacologic and transgenic approaches were used, followed by in situ hybridization, immunocytochemistry, and quantitative RT-PCR (qRT-PCR), to identify mechanisms through which NeuroD functions. In adults, following photoreceptor ablation and NeuroD knockdown, similar methods as above were used to identify NeuroD function during photoreceptor regeneration. RESULTS In embryos, NeuroD function is non-cell-autonomous, NeuroD knockdown increases Notch pathway gene expression, Notch inhibition rescues the NeuroD knockdown-induced deficiency in cell cycle exit but not photoreceptor maturation, and Notch activation and CRISPR/Cas9 mutation of neurod recapitulate NeuroD knockdown. In adults, NeuroD knockdown prevents cell cycle exit and photoreceptor regeneration and increases Notch pathway gene expression, and Notch inhibition rescues this phenotype. CONCLUSIONS These data demonstrate that during embryonic development, NeuroD governs photoreceptor genesis via non-cell-autonomous mechanisms and that, during photoreceptor development and regeneration, Notch signaling is a mechanistic link between NeuroD and cell cycle exit. In contrast, during embryonic development, NeuroD governs photoreceptor maturation via mechanisms that are independent of Notch signaling.
PLOS Genetics | 2016
Mailin Sotolongo-Lopez; Karen Alvarez-Delfin; Carole J. Saade; Daniel L. Vera; James M. Fadool
The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species.
Investigative Ophthalmology & Visual Science | 2007
James M. Fadool; Karen Alvarez-Delfin; A. Csizinszky; W. E. Hiller; Ann C. Morris
Investigative Ophthalmology & Visual Science | 2015
Mailin Sotolongo-Lopez; Karen Alvarez-Delfin; James M. Fadool
Investigative Ophthalmology & Visual Science | 2014
James M. Fadool; Karen Alvarez-Delfin; Orleiquis Guerra; Mailin Sotolongo-Lopez
Investigative Ophthalmology & Visual Science | 2013
Mailin Sotolongo-Lopez; Karen Alvarez-Delfin; James M. Fadool
Investigative Ophthalmology & Visual Science | 2012
James M. Fadool; Karen Alvarez-Delfin; Carole J. Saade
Investigative Ophthalmology & Visual Science | 2010
Karen Alvarez-Delfin; Jason R. Willer; Mailin Sotolongo-Lopez; James M. Fadool