Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen B. Avraham is active.

Publication


Featured researches published by Karen B. Avraham.


Immunity | 1998

Targeted Disruption of the Mouse Caspase 8 Gene Ablates Cell Death Induction by the TNF Receptors, Fas/Apo1, and DR3 and Is Lethal Prenatally

Eugene Varfolomeev; Marcus Schuchmann; Victor Luria; Nuchanard Chiannilkulchai; Jacques S. Beckmann; Igor Mett; Denis Rebrikov; Vadim Brodianski; Oliver Kemper; Orit Kollet; Tsvee Lapidot; Dror Soffer; Tama Sobe; Karen B. Avraham; Tanya Goncharov; Helmut Holtmann; Peter Lonai; David Wallach

Homozygous targeted disruption of the mouse Caspase 8 (Casp8) gene was found to be lethal in utero. The Caspase 8 null embryos exhibited impaired heart muscle development and congested accumulation of erythrocytes. Recovery of hematopoietic colony-forming cells from the embryos was very low. In fibroblast strains derived from these embryos, the TNF receptors, Fas/Apo1, and DR3 were able to activate the Jun N-terminal kinase and to trigger IkappaB alpha phosphorylation and degradation. They failed, however, to induce cell death, while doing so effectively in wild-type fibroblasts. These findings indicate that Caspase 8 plays a necessary and nonredundant role in death induction by several receptors of the TNF/NGF family and serves a vital role in embryonal development.


Nature Genetics | 2000

Genome-wide, large-scale production of mutant mice by ENU mutagenesis

M. Hrabe de Angelis; Heinrich Flaswinkel; Helmut Fuchs; Birgit Rathkolb; Dian Soewarto; Susan Marschall; Stephan Heffner; Walter Pargent; K. Wuensch; Martin Jung; A. Reis; Thomas Richter; Francesca Alessandrini; Thilo Jakob; Edith Fuchs; Helmut J. Kolb; Elisabeth Kremmer; K. Schaeble; B. Rollinski; Adelbert A. Roscher; Christoph Peters; Thomas Meitinger; Tim M. Strom; Thomas Steckler; Florian Holsboer; Thomas Klopstock; F. Gekeler; C. Schindewolf; T. Jung; Karen B. Avraham

In the post-genome era, the mouse will have a major role as a model system for functional genome analysis. This requires a large number of mutants similar to the collections available from other model organisms such as Drosophila melanogaster and Caenorhabditis elegans. Here we report on a systematic, genome-wide, mutagenesis screen in mice. As part of the German Human Genome Project, we have undertaken a large-scale ENU-mutagenesis screen for dominant mutations and a limited screen for recessive mutations. In screening over 14,000 mice for a large number of clinically relevant parameters, we recovered 182 mouse mutants for a variety of phenotypes. In addition, 247 variant mouse mutants are currently in genetic confirmation testing and will result in additional new mutant lines. This mutagenesis screen, along with the screen described in the accompanying paper, leads to a significant increase in the number of mouse models available to the scientific community. Our mutant lines are freely accessible to non-commercial users (for information, see http://www.gsf.de/ieg/groups/enu-mouse.html).


American Journal of Human Genetics | 2005

GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study

Rikkert L. Snoeckx; P.L.M. Huygen; Delphine Feldmann; Sandrine Marlin; Françoise Denoyelle; Jaroslaw Waligora; Malgorzata Mueller-Malesinska; Agneszka Pollak; Rafał Płoski; Alessandra Murgia; Eva Orzan; Pierangela Castorina; Umberto Ambrosetti; Ewa Nowakowska-Szyrwinska; Jerzy Bal; Wojciech Wiszniewski; Andreas R. Janecke; Doris Nekahm-Heis; Pavel Seeman; O. Bendová; Margaret A. Kenna; Anna Frangulov; Heidi L. Rehm; Mustafa Tekin; Armagan Incesulu; Hans Henrik M Dahl; Desirée du Sart; Lucy Jenkins; Deirdre Lucas; Maria Bitner-Glindzicz

Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.


Journal of Medical Genetics | 2005

A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment

F J del Castillo; Montserrat Rodríguez-Ballesteros; Araceli Álvarez; T. Hutchin; E. Leonardi; C. A. M. de Oliveira; Hela Azaiez; Zippora Brownstein; Matthew R. Avenarius; Sandrine Marlin; Arti Pandya; Hashem Shahin; Kirby Siemering; Dominique Weil; Wim Wuyts; Luis A. Aguirre; Y. Martin; Miguel A. Moreno-Pelayo; Manuela Villamar; Karen B. Avraham; Hans-Henrik M. Dahl; Moien Kanaan; Walter E. Nance; Christine Petit; Richard J.H. Smith; G. Van Camp; Edi Lúcia Sartorato; Alessandra Murgia; Felipe Moreno; I del Castillo

Hearing impairment is a common and highly heterogeneous sensory disorder. Genetic causes are thought to be responsible for more than 60% of the cases in developed countries.1 In the majority of cases, non-syndromic hearing impairment is inherited in an autosomal recessive pattern.2 Thirty eight different loci and 20 genes for autosomal recessive non-syndromic hearing impairment (ARNSHI) have been identified to date.3 In many populations, up to 50% of all cases of ARNSHI are caused by mutations in the DFNB1 locus (MIM 220290) on 13q12.4 This locus contains the GJB2 gene (MIM 121011), encoding connexin-26 (Cx26),5 which belongs to a family of transmembrane proteins with about 20 members in humans. Hexamers of connexins (connexons) are displayed in the plasma membrane. Docking of connexons on the surfaces of two adjacent cells results in the formation of intercellular gap junction channels.6 Several different connexins, including Cx26, have been shown to participate in the complex gap junction networks of the cochlea.7,8 It has been postulated that these networks play a key role in potassium homeostasis, which is essential for the sound transduction mechanism.9 Given the high prevalence of DFNB1 deafness, molecular testing for GJB2 mutations has become the standard of care for the diagnosis of patients with non-syndromic hearing impairment of unknown cause.10 However, the finding of a large number of affected subjects with only one GJB2 mutant allele complicates the molecular diagnosis of DFNB1 deafness. In different studies, these have accounted for 10–50% of deaf subjects with GJB2 mutations.4 It was hypothesised that there could be other mutations in the DFNB1 locus but outside the GJB2 gene. This hypothesis gained support by the finding of a deletion in the DFNB1 locus outside GJB2 but truncating the neighbouring GJB6 gene (MIM 604418), which …


American Journal of Human Genetics | 2003

Prevalence and Evolutionary Origins of the del(GJB6-D13S1830) Mutation in the DFNB1 Locus in Hearing-Impaired Subjects: A Multicenter Study

Ignacio del Castillo; Miguel A. Moreno-Pelayo; Francisco Castillo; Zippora Brownstein; Sandrine Marlin; Quint Adina; David J. Cockburn; Arti Pandya; Kirby Siemering; G. Parker Chamberlin; Ester Ballana; Wim Wuyts; Andréa Trevas Maciel-Guerra; Araceli Álvarez; Manuela Villamar; Mordechai Shohat; Dvorah Abeliovich; Hans-Henrik M. Dahl; Xavier Estivill; Paolo Gasparini; Tim P. Hutchin; Walter E. Nance; Edi Lúcia Sartorato; Richard J.H. Smith; Guy Van Camp; Karen B. Avraham; Christine Petit; Felipe Moreno

Mutations in GJB2, the gene encoding connexin-26 at the DFNB1 locus on 13q12, are found in as many as 50% of subjects with autosomal recessive, nonsyndromic prelingual hearing impairment. However, genetic diagnosis is complicated by the fact that 10%-50% of affected subjects with GJB2 mutations carry only one mutant allele. Recently, a deletion truncating the GJB6 gene (encoding connexin-30), near GJB2 on 13q12, was shown to be the accompanying mutation in approximately 50% of these deaf GJB2 heterozygotes in a cohort of Spanish patients, thus becoming second only to 35delG at GJB2 as the most frequent mutation causing prelingual hearing impairment in Spain. Here, we present data from a multicenter study in nine countries that shows that the deletion is present in most of the screened populations, with higher frequencies in France, Spain, and Israel, where the percentages of unexplained GJB2 heterozygotes fell to 16.0%-20.9% after screening for the del(GJB6-D13S1830) mutation. Our results also suggest that additional mutations remain to be identified, either in DFNB1 or in other unlinked genes involved in epistatic interactions with GJB2. Analysis of haplotypes associated with the deletion revealed a founder effect in Ashkenazi Jews and also suggested a common founder for countries in Western Europe. These results have important implications for the diagnosis and counseling of families with DFNB1 deafness.


American Journal of Human Genetics | 2010

Whole Exome Sequencing and Homozygosity Mapping Identify Mutation in the Cell Polarity Protein GPSM2 as the Cause of Nonsyndromic Hearing Loss DFNB82

Tom Walsh; Hashem Shahin; Tal Elkan-Miller; Ming K. Lee; Anne M. Thornton; Wendy Roeb; Amal Abu Rayyan; Suheir Loulus; Karen B. Avraham; Mary Claire King; Moien Kanaan

Massively parallel sequencing of targeted regions, exomes, and complete genomes has begun to dramatically increase the pace of discovery of genes responsible for human disorders. Here we describe how exome sequencing in conjunction with homozygosity mapping led to rapid identification of the causative allele for nonsyndromic hearing loss DFNB82 in a consanguineous Palestinian family. After filtering out worldwide and population-specific polymorphisms from the whole exome sequence, only a single deleterious mutation remained in the homozygous region linked to DFNB82. The nonsense mutation leads to an early truncation of the G protein signaling modulator GPSM2, a protein that is essential for maintenance of cell polarity and spindle orientation. In the mouse inner ear, GPSM2 is localized to apical surfaces of hair cells and supporting cells and is most highly expressed during embryonic development. Identification of GPSM2 as essential to the development of normal hearing suggests dysregulation of cell polarity as a mechanism underlying hearing loss.


Cell | 1988

Down's syndrome: abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu/Zn-superoxide dismutase

Karen B. Avraham; Michael Schickler; Dan Sapoznikov; R. Yarom; Yoram Groner

To investigate the possible involvement of Cu/Zn-superoxide dismutase (CuZnSOD) gene dosage in the neuropathological symptoms of Downs syndrome, we analyzed the tongue muscle of transgenic mice that express elevated levels of human CuZnSOD. The tongue neuromuscular junctions (NMJ) in the transgenic animals exhibited significant pathological changes, namely, withdrawal and destruction of some terminal axons and the development of multiple small terminals. The ratio of terminal axon area to postsynaptic membrane decreased, and secondary folds were often complex and hyperplastic. The morphological changes in the transgenic NMJ were similar to those previously seen in muscles of aging mice and rats as well as in tongue muscle of patients with Downs syndrome. The findings suggest that CuZnSOD gene dosage is involved in the pathological abnormalities of tongue NMJ observed in Downs syndrome patients.


American Journal of Human Genetics | 2001

MYO6, the Human Homologue of the Gene Responsible for Deafness in Snell’s Waltzer Mice, Is Mutated in Autosomal Dominant Nonsyndromic Hearing Loss

Salvatore Melchionda; Nadav Ahituv; Luigi Bisceglia; Tama Sobe; Fabian Glaser; Raquel Rabionet; Maria L. Arbonés; Angelo Notarangelo; Enzo Di Iorio; Massimo Carella; Leopoldo Zelante; Xavier Estivill; Karen B. Avraham; Paolo Gasparini

Mutations in the unconventional myosin VI gene, Myo6, are associated with deafness and vestibular dysfunction in the Snells waltzer (sv) mouse. The corresponding human gene, MYO6, is located on chromosome 6q13. We describe the mapping of a new deafness locus, DFNA22, on chromosome 6q13 in a family affected by a nonsyndromic dominant form of deafness (NSAD), and the subsequent identification of a missense mutation in the MYO6 gene in all members of the family with hearing loss.


Proceedings of the National Academy of Sciences of the United States of America | 2002

From flies' eyes to our ears: Mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30

Tom Walsh; Vanessa Walsh; Sarah Vreugde; Ronna Hertzano; Hashem Shahin; Smadar Haika; Ming K. Lee; Moien Kanaan; Mary Claire King; Karen B. Avraham

Normal vision in Drosophila requires NINAC, a class III myosin. Class III myosins are hybrid motor-signaling molecules, with an N-terminal kinase domain, highly conserved head and neck domains, and a class III-specific tail domain. In Drosophila rhabdomeres, NINAC interacts with actin filaments and with a PDZ scaffolding protein to organize the phototransduction machinery into a signaling complex. Recessive null mutations in Drosophila NINAC delay termination of the photoreceptor response and lead to progressive retinal degeneration. Here, we show that normal hearing in humans requires myosin IIIA, the human homolog of NINAC. In an extended Israeli family, nonsyndromic progressive hearing loss is caused by three different recessive, loss-of-function mutations in myosin IIIA. Of 18 affected relatives in Family N, 7 are homozygous and 11 are compound heterozygous for pairs of mutant alleles. Expression of mammalian myosin IIIA is highly restricted, with the strongest expression in retina and cochlea. The involvement of homologous class III myosins in both Drosophila vision and human hearing is an evolutionary link between these sensory systems.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The Notch ligand Jagged1 is required for inner ear sensory development

Amy E. Kiernan; Nadav Ahituv; Helmut Fuchs; Rudi Balling; Karen B. Avraham; Karen P. Steel; M. Hrabe de Angelis

Within the mammalian inner ear there are six separate sensory regions that subserve the functions of hearing and balance, although how these sensory regions become specified remains unknown. Each sensory region is populated by two cell types, the mechanosensory hair cell and the supporting cell, which are arranged in a mosaic in which each hair cell is surrounded by supporting cells. The proposed mechanism for creating the sensory mosaic is lateral inhibition mediated by the Notch signaling pathway. However, one of the Notch ligands, Jagged1 (Jag1), does not show an expression pattern wholly consistent with a role in lateral inhibition, as it marks the sensory patches from very early in their development—presumably long before cells make their final fate decisions. It has been proposed that Jag1 has a role in specifying sensory versus nonsensory epithelium within the ear [Adam, J., Myat, A., Roux, I. L., Eddison, M., Henrique, D., Ish-Horowicz, D. & Lewis, J. (1998) Development (Cambridge, U.K.) 125, 4645–4654]. Here we provide experimental evidence that Notch signaling may be involved in specifying sensory regions by showing that a dominant mouse mutant headturner (Htu) contains a missense mutation in the Jag1 gene and displays missing posterior and sometimes anterior ampullae, structures that house the sensory cristae. Htu/+ mutants also demonstrate a significant reduction in the numbers of outer hair cells in the organ of Corti. Because lateral inhibition mediated by Notch predicts that disruptions in this pathway would lead to an increase in hair cells, we believe these data indicate an earlier role for Notch within the inner ear.

Collaboration


Dive into the Karen B. Avraham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Walsh

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy A. Jenkins

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Neal G. Copeland

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge