Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen C. Peebles is active.

Publication


Featured researches published by Karen C. Peebles.


Experimental Physiology | 2007

Early morning impairment in cerebral autoregulation and cerebrovascular CO2 reactivity in healthy humans: relation to endothelial function

Philip N. Ainslie; Carissa Murrell; Karen C. Peebles; Marianne Swart; Margot Skinner; Michael J.A. Williams; Robin D. Taylor

The reduction in cerebrovascular reactivity to CO2 and/or endothelial function that occurs in the early hours after waking are potential causes for the increased risk for cardiovascular events at this time point. It is unknown whether cerebral autoregulation is reduced in the morning. We tested the hypothesis that early morning reduction in endothelium‐dependent vascular reactivity would be linked to changes in cerebrovascular reactivity to CO2 and cerebral autoregulation (CA). Overnight changes in a dynamic cerebral autoregulation index (ARI) were determined from continuous recordings of blood flow velocity in the middle cerebral artery (MCAv) and arterial blood pressure (BP) during transiently induced hypotension in 20 individuals. Frontal cortical oxygenation (near infrared spectroscopy) and cerebral haemodynamics were also monitored during hypercapnia and before and during 3 min of active standing. Brachial artery flow‐mediated endothelium‐dependent vasodilatation (FMD) and endothelium‐independent dilatation (NFMD) were also monitored. From evening to morning, there was a significant lowering in ARI (5.3 ± 0.5 versus 4.7 ± 0.6 a.u.; P < 0.05), cerebrovascular reactivity to CO2 (5.3 ± 0.6 versus 4.6 ± 1.1% mmHg−1; P < 0.05) and FMD (7.6 ± 0.9 versus 6.0 ± 1.4%; P < 0.05). The lowered FMD was related to the decrease in cerebrovascular reactivity to CO2 (r= 0.76; P < 0.05). Transient reductions in morning MCAv and cortical oxyhaemoglobin concentrations were observed upon resuming a supine‐to‐upright position (P < 0.05 versus evening). The early morning reduction in cerebral autoregulation may facilitate the onset of cerebrovascular accidents; this may be of particular relevance to at‐risk groups, especially upon resuming the upright position.


The Journal of Physiology | 2007

Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2

Karen C. Peebles; Leo Anthony Celi; Ken McGrattan; Carissa Murrell; Kate N. Thomas; Philip N. Ainslie

This study examined cerebrovascular reactivity and ventilation during step changes in CO2 in humans. We hypothesized that: (1) end‐tidal P  CO 2 (P  ET,CO 2 ) would overestimate arterial P  CO 2 (P  a,CO 2 ) during step variations in P  ET,CO 2 and thus underestimate cerebrovascular CO2 reactivity; and (2) since P  CO 2 from the internal jugular vein (P  jv,CO 2 ) better represents brain tissue P  CO 2, cerebrovascular CO2 reactivity would be higher when expressed against P  jv,CO 2 than with P  a,CO 2, and would be related to the degree of ventilatory change during hypercapnia. Incremental hypercapnia was achieved through 4 min administrations of 4% and 8% CO2. Incremental hypocapnia involved two 4 min steps of hyperventilation to change P  ET,CO 2, in an equal and opposite direction, to that incurred during hypercapnia. Arterial and internal jugular venous blood was sampled simultaneously at baseline and during each CO2 step. Cerebrovascular reactivity to CO2 was expressed as the percentage change in blood flow velocity in the middle cerebral artery (MCAv) per mmHg change in P  a,CO 2 and P  jv,CO 2. During hypercapnia, but not hypocapnia, P  ET,CO 2 overestimated P  a,CO 2 by +2.4 ± 3.4 mmHg and underestimated MCAv‐CO2 reactivity (P < 0.05). The hypercapnic and hypocapnic MCAv‐CO2 reactivity was higher (∼97% and ∼24%, respectively) when expressed with P  jv,CO 2 than P  a,CO 2 (P < 0.05). The hypercapnic MCAv–P  jv,CO 2 reactivity was inversely related to the increase in ventilatory change (R2= 0.43; P < 0.05), indicating that a reduced reactivity results in less central CO2 washout and greater ventilatory stimulus. Differences in the P  ET,CO 2, P  a,CO 2 and P  jv,CO 2 –MCAv relationships have implications for the true representation and physiological interpretation of cerebrovascular CO2 reactivity.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Assessment of cerebral autoregulation: the quandary of quantification.

Yu-Chieh Tzeng; Philip N. Ainslie; William H. Cooke; Karen C. Peebles; Christopher K. Willie; Braid A. MacRae; Jonathan D. Smirl; Helen M. Horsman; Caroline A. Rickards

We assessed the convergent validity of commonly applied metrics of cerebral autoregulation (CA) to determine the extent to which the metrics can be used interchangeably. To examine between-subject relationships among low-frequency (LF; 0.07-0.2 Hz) and very-low-frequency (VLF; 0.02-0.07 Hz) transfer function coherence, phase, gain, and normalized gain, we performed retrospective transfer function analysis on spontaneous blood pressure and middle cerebral artery blood velocity recordings from 105 individuals. We characterized the relationships (n = 29) among spontaneous transfer function metrics and the rate of regulation index and autoregulatory index derived from bilateral thigh-cuff deflation tests. In addition, we analyzed data from subjects (n = 29) who underwent a repeated squat-to-stand protocol to determine the relationships between transfer function metrics during forced blood pressure fluctuations. Finally, data from subjects (n = 16) who underwent step changes in end-tidal P(CO2) (P(ET)(CO2) were analyzed to determine whether transfer function metrics could reliably track the modulation of CA within individuals. CA metrics were generally unrelated or showed only weak to moderate correlations. Changes in P(ET)(CO2) were positively related to coherence [LF: β = 0.0065 arbitrary units (AU)/mmHg and VLF: β = 0.011 AU/mmHg, both P < 0.01] and inversely related to phase (LF: β = -0.026 rad/mmHg and VLF: β = -0.018 rad/mmHg, both P < 0.01) and normalized gain (LF: β = -0.042%/mmHg(2) and VLF: β = -0.013%/mmHg(2), both P < 0.01). However, Pet(CO(2)) was positively associated with gain (LF: β = 0.0070 cm·s(-1)·mmHg(-2), P < 0.05; and VLF: β = 0.014 cm·s(-1)·mmHg(-2), P < 0.01). Thus, during changes in P(ET)(CO2), LF phase was inversely related to LF gain (β = -0.29 cm·s(-1)·mmHg(-1)·rad(-1), P < 0.01) but positively related to LF normalized gain (β = 1.3% mmHg(-1)/rad, P < 0.01). These findings collectively suggest that only select CA metrics can be used interchangeably and that interpretation of these measures should be done cautiously.


The Journal of Physiology | 2002

Prenatal nicotine exposure increases apnoea and reduces nicotinic potentiation of hypoglossal inspiratory output in mice

Dean M. Robinson; Karen C. Peebles; Henry Kwok; Brandon M. Adams; Lan Ling Clarke; Gerald A. Woollard; Gregory D. Funk

We examined the effects of in utero nicotine exposure on postnatal development of breathing pattern and ventilatory responses to hypoxia (7.4 % O2) using whole‐body plethysmography in mice at postnatal day 0 (P0), P3, P9, P19 and P42. Nicotine delayed early postnatal changes in breathing pattern. During normoxia, control and nicotine‐exposed P0 mice exhibited a high frequency of apnoea (fA) which declined by P3 in control animals (from 6.7 ± 0.7 to 2.2 ± 0.7 min−1) but persisted in P3 nicotine‐exposed animals (5.4 ± 1.3 min−1). Hypoxia induced a rapid and sustained reduction in fA except in P0 nicotine‐exposed animals where it fell initially and then increased throughout the hypoxic period. During recovery, fA increased above control levels in both groups at P0. By P3 this increase was reduced in control but persisted in nicotine‐exposed animals. To examine the origin of differences in respiratory behaviour, we compared the activity of hypoglossal (XII) nerves and motoneurons in medullary slice preparations. The frequency and variability of the respiratory rhythm and the envelope of inspiratory activity in XII nerves and motoneurons were indistinguishable between control and nicotine‐exposed animals. Activation of postsynaptic nicotine receptors caused an inward current in XII motoneurons that potentiated XII nerve burst amplitude by 25 ± 5 % in control but only 14 ± 3 % in nicotine‐exposed animals. Increased apnoea following nicotine exposure does not appear to reflect changes in basal activity of rhythm or pattern‐generating networks, but may result, in part, from reduced nicotinic modulation of XII motoneurons.


The Journal of Physiology | 2011

Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m

Samuel J. E. Lucas; Keith R. Burgess; Kate N. Thomas; Joseph Donnelly; Karen C. Peebles; Rebekah A. I. Lucas; Jui-Lin Fan; James D. Cotter; Rishi Basnyat; Philip N. Ainslie

Brain blood flow increases during the first week of living at high altitude. We do not understand completely what causes the increase or how the factors that regulate brain blood flow are affected by the high‐altitude environment. Our results show that the balance of oxygen (O2) and carbon dioxide (CO2) pressures in arterial blood explains 40% of the change in brain blood flow upon arrival at high altitude (5050 m). We also show that blood vessels in the brain respond to increases and decreases in CO2 differently at high altitude compared to sea level, and that this can affect breathing responses as well. These results help us to better understand the regulation of brain blood flow at high altitude and are also relevant to diseases that are accompanied by reductions in the pressure of oxygen in the blood.


The Journal of Physiology | 2010

Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2

Jui Lin Fan; Keith R. Burgess; Riche Basnyat; Kate N. Thomas; Karen C. Peebles; Samuel J. E. Lucas; Rebekah A. I. Lucas; Joseph Donnelly; James D. Cotter; Philip N. Ainslie

An altered acid–base balance following ascent to high altitude has been well established. Such changes in pH buffering could potentially account for the observed increase in ventilatory CO2 sensitivity at high altitude. Likewise, if [H+] is the main determinant of cerebrovascular tone, then an alteration in pH buffering may also enhance the cerebral blood flow (CBF) responsiveness to CO2 (termed cerebrovascular CO2 reactivity). However, the effect altered acid–base balance associated with high altitude ascent on cerebrovascular and ventilatory responsiveness to CO2 remains unclear. We measured ventilation , middle cerebral artery velocity (MCAv; index of CBF) and arterial blood gases at sea level and following ascent to 5050 m in 17 healthy participants during modified hyperoxic rebreathing. At 5050 m, resting , MCAv and pH were higher (P < 0.01), while bicarbonate concentration and partial pressures of arterial O2 and CO2 were lower (P < 0.01) compared to sea level. Ascent to 5050 m also increased the hypercapnic MCAv CO2 reactivity (2.9 ± 1.1 vs. 4.8 ± 1.4% mmHg−1; P < 0.01) and CO2 sensitivity (3.6 ± 2.3 vs. 5.1 ± 1.7 l min−1 mmHg−1; P < 0.01). Likewise, the hypocapnic MCAv CO2 reactivity was increased at 5050 m (4.2 ± 1.0 vs. 2.0 ± 0.6% mmHg−1; P < 0.01). The hypercapnic MCAv CO2 reactivity correlated with resting pH at high altitude (R2= 0.4; P < 0.01) while the central chemoreflex threshold correlated with bicarbonate concentration (R2= 0.7; P < 0.01). These findings indicate that (1) ascent to high altitude increases the ventilatory CO2 sensitivity and elevates the cerebrovascular responsiveness to hypercapnia and hypocapnia, and (2) alterations in cerebrovascular CO2 reactivity and central chemoreflex may be partly attributed to an acid–base balance associated with high altitude ascent. Collectively, our findings provide new insights into the influence of high altitude on cerebrovascular function and highlight the potential role of alterations in acid–base balance in the regulation in CBF and ventilatory control.


Journal of Applied Physiology | 2008

Human cerebral arteriovenous vasoactive exchange during alterations in arterial blood gases

Karen C. Peebles; A. Mark Richards; Leo Anthony Celi; Ken McGrattan; Carissa Murrell; Philip N. Ainslie

Cerebral blood flow (CBF) is highly regulated by changes in arterial Pco(2) and arterial Po(2). Evidence from animal studies indicates that various vasoactive factors, including release of norepinephrine, endothelin, adrenomedullin, C-natriuretic peptide (CNP), and nitric oxide (NO), may play a role in arterial blood gas-induced alterations in CBF. For the first time, we directly quantified exchange of these vasoactive factors across the human brain. Using the Fick principle and transcranial Doppler ultrasonography, we measured CBF in 12 healthy humans at rest and during hypercapnia (4 and 8% CO(2)), hypocapnia (voluntary hyperventilation), and hypoxia (12 and 10% O(2)). At each level, blood was sampled simultaneously from the internal jugular vein and radial artery. With the exception of CNP and NO, the simultaneous quantification of norepinephrine, endothelin, or adrenomedullin showed no cerebral uptake or release during changes in arterial blood gases. Hypercapnia, but not hypocapnia, increased CBF and caused a net cerebral release of nitrite (a marker of NO), which was reflected by an increase in the venous-arterial difference for nitrite: 57 +/- 18 and 150 +/- 36 micromol/l at 4% and 8% CO(2), respectively (both P < 0.05). Release of cerebral CNP was also observed during changes in CO(2) (hypercapnia vs. hypocapnia, P < 0.05). During hypoxia, there was a net cerebral uptake of nitrite, which was reflected by a decreased venous-arterial difference for nitrite: -96 +/- 14 micromol/l at 10% O(2) (P < 0.05). These data indicate that there is a differential exchange of NO across the brain during hypercapnia and hypoxia and that CNP may play a complementary role in CO(2)-induced CBF changes.


Brain Research | 2008

Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2

Philip N. Ainslie; Leo Anthony Celi; Ken McGrattan; Karen C. Peebles; Shigehiko Ogoh

Changes in the partial pressure of arterial CO2 (PaCO2) regulates cerebrovascular tone and dynamic cerebral autoregulation (CA). Elevations in PaCO2 also increases autonomic neural activity and may alter the arterial baroreflex. We hypothesized that hypercapnia would impair, and hypocapnia would improve, dynamic CA and that these changes would occur independently of any change in baroreflex sensitivity (BRS). In 10 healthy male subjects, incremental hypercapnia was achieved through 4-min administrations of 4% and 8% CO2. Incremental hypocapnia involved two 4-min steps of hyperventilation to change end-tidal PCO2, in an equal and opposite direction, to that incurred during hypercapnia. End-tidal, arterial and internal jugular vein PCO2 were sampled simultaneously at baseline and during each CO2 step. Dynamic CA and BRS was assessed at baseline and during each step change in PaCO2 using spectral and transfer-function analysis of beat-by-beat changes in mean arterial blood pressure (MAP), heart rate and flow velocity in the middle cerebral arterial (MCAv). Critical closing pressure (CCP), an estimate of cerebrovascular tone, was estimated from extrapolation of the MAP-MCAv waveforms. Hypercapnia caused a progressive increase in PaCO2 and MCAv whereas hypocapnia caused the opposite effect. Despite marked changes in CPP, there were no evident change in transfer-function gain, coherence, MAP variability or BRS; however, both MCAv variability and phase in the very-low frequency range was reduced during the most severe level of hyper- and hypocapnia (P < 0.05), and were related to elevations in ventilation (R2 = 0.42-0.52, respectively; P < 0.001). It seems that hyperventilation, rather than PaCO2, has an important influence on dynamic CA.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Influence of indomethacin on ventilatory and cerebrovascular responsiveness to CO2 and breathing stability: the influence of PCO2 gradients

Jui Lin Fan; Keith R. Burgess; Kate N. Thomas; Karen C. Peebles; Samuel J. E. Lucas; Rebekah A. I. Lucas; James D. Cotter; Philip N. Ainslie

Indomethacin (INDO), a reversible cyclooxygenase inhibitor, is a useful tool for assessing the role of cerebrovascular reactivity on ventilatory control. Despite this, the effect of INDO on breathing stability during wakefulness has yet to be examined. Although the effect of reductions in cerebrovascular CO(2) reactivity on ventilatory CO(2) sensitivity is likely dependent upon the method used, no studies have compared the effect of INDO on steady-state and modified rebreathing estimates of ventilatory CO(2) sensitivity. The latter method includes the influence of PCO(2) gradients and cerebral perfusion, whereas the former does not. We examined the hypothesis that INDO-induced reduction in cerebrovascular CO(2) reactivity would 1) cause unstable breathing in conscious humans and 2) increase ventilatory CO(2) sensitivity during the steady-state method but not during rebreathing methods. We measured arterial blood gases, ventilation (VE), and middle cerebral artery velocity (MCAv) before and 90 min following INDO ingestion (100 mg) or placebo in 12 healthy participants. There were no changes in resting arterial blood gases or Ve following either intervention. INDO increased the magnitude of Ve variability (index of breathing stability) during spontaneous air breathing (+4.3 +/- 5.2 Deltal/min, P = 0.01) and reduced MCAv (-25 +/- 19%, P < 0.01) and MCAv-CO(2) reactivity during steady-state (-47 +/- 27%, P < 0.01) and rebreathing (-32 +/- 25%, P < 0.01). The Ve-CO(2) sensitivity during the steady-state method was increased with INDO (+0.5 +/- 0.5 l x min(-1) x mmHg(-1), P < 0.01), while no changes were observed during rebreathing (P > 0.05). These data indicate that the net effect of INDO on ventilatory control is an enhanced ventilatory loop gain resulting in increased breathing instability. Our findings also highlight important methodological and physiological considerations when assessing the effect of INDO on ventilatory CO(2) sensitivity, whereby the effect of INDO-induced reduction of cerebrovascular CO(2) reactivity on ventilatory CO(2) sensitivity is unmasked with the rebreathing method.


Journal of Applied Physiology | 2012

Sympathetic regulation of the human cerebrovascular response to carbon dioxide

Karen C. Peebles; Ollie G. Ball; Braid A. MacRae; Helen M. Horsman; Yu-Chieh Tzeng

Although the cerebrovasculature is known to be exquisitely sensitive to CO(2), there is no consensus on whether the sympathetic nervous system plays a role in regulating cerebrovascular responses to changes in arterial CO(2). To address this question, we investigated human cerebrovascular CO(2) reactivity in healthy participants randomly assigned to the α(1)-adrenoreceptor blockade group (9 participants; oral prazosin, 0.05 mg/kg) or the placebo control (9 participants) group. We recorded mean arterial blood pressure (MAP), heart rate (HR), mean middle cerebral artery flow velocity (MCA(V mean)), and partial pressure of end-tidal CO(2) (Pet(CO(2))) during 5% CO(2) inhalation and voluntary hyperventilation. CO(2) reactivity was quantified as the slope of the linear relationship between breath-to-breath Pet(CO(2)) and the average MCAv(mean) within successive breathes after accounting for MAP as a covariate. Prazosin did not alter resting HR, Pet(CO(2)), MAP, or MCA(V mean). The reduction in hypocapnic CO(2) reactivity following prazosin (-0.48 ± 0.093 cm·s(-1) · mmHg(-1)) was greater compared with placebo (-0.19 ± 0.087 cm · s(-1) · mmHg(-1); P < 0.05 for interaction). In contrast, the change in hypercapnic CO(2) reactivity following prazosin (-0.23 cm · s(-1) · mmHg(-1)) was similar to placebo (-0.31 cm · s(-1) · mmHg(-1); P = 0.50 for interaction). These data indicate that the sympathetic nervous system contributes to CO(2) reactivity via α(1)-adrenoreceptors; blocking this pathway with prazosin reduces CO(2) reactivity to hypocapnia but not hypercapnia.

Collaboration


Dive into the Karen C. Peebles's collaboration.

Top Co-Authors

Avatar

Philip N. Ainslie

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebekah A. I. Lucas

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge