Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen E. Duffy is active.

Publication


Featured researches published by Karen E. Duffy.


Journal of Biological Chemistry | 2007

Effects of Single Nucleotide Polymorphisms on Toll-like Receptor 3 Activity and Expression in Cultured Cells

C. T. Ranjith-Kumar; William M. Miller; Jingchuan Sun; Jin Xiong; Jon Santos; Ian Yarbrough; Roberta Lamb; Juliane Mills; Karen E. Duffy; Scott Hoose; Mark Cunningham; Andreas Holzenburg; M. Lamine Mbow; Robert T. Sarisky; C. Cheng Kao

Recognition of double-stranded RNA by Toll-like receptor 3 (TLR3) will increase the production of cytokines and chemokines through transcriptional activation by the NF-κB protein. Over 136 single-nucleotide polymorphisms (SNPs) in TLR3 have been identified in the human population. Of these, four alter the sequence of the TLR3 protein. Molecular modeling suggests that two of the SNPs, N284I and L412F, could affect the packing of the leucine-rich repeating units in TLR3. Notably, L412F is reported to be present in 20% of the population and is higher in the asthmatic population. To examine whether the four SNPs affect TLR3 function, each were cloned and tested for their ability to activate the expression of TLR3-dependent reporter constructs. SNP N284I was nearly completely defective for activating reporter activity, and L412F was reduced in activity. These two SNPs did not obviously affect the level of TLR3 expression or their intracellular location in vesicles. However, N284I and L412F were underrepresented on the cell surface, as determined by flow cytometry analysis, and were not efficiently secreted into the culture medium when expressed as the soluble ectodomain. They were also reduced in their ability to act in a dominant negative fashion on the wild type TLR3 allele. These observations suggest that N284I and L412F affect the activities of TLR3 needed for proper signaling.


Journal of Biological Chemistry | 2006

Structural and functional analyses of the human Toll-like receptor 3. Role of glycosylation.

Jingchuan Sun; Karen E. Duffy; C. T. Ranjith-Kumar; Jin Xiong; Roberta Lamb; Jon Santos; Hema Masarapu; Mark Cunningham; Andreas Holzenburg; Robert T. Sarisky; M. Lamine Mbow; Cheng Kao

Toll-like receptors (TLRs) play critical roles in bridging the innate and adaptive immune responses. The human TLR3 recognizes foreign-derived double-stranded RNA and endogenous necrotic cell RNA as ligands. Herein we characterized the contribution of glycosylation to TLR3 structure and function. Exogenous addition of purified extracellular domain of TLR3 (hTLR3 ECD) expressed in human embryonic kidney cells was found to inhibit TLR3-dependent signaling, thus providing a reagent for structural and functional characterization. Approximately 35% of the mass of the hTLR3 ECD was due to posttranslational modification, with N-linked glycosyl groups contributing substantially to the additional mass. Cells treated with tunicamycin, an inhibitor of glycosylation, prevented TLR3-induced NF-κB activation, confirming that N-linked glycosylation is required for bioactivity of this receptor. Further, mutations in two of these predicted glycosylation sites impaired TLR3 signaling without obviously affecting the expression of the protein. Single-particle structures reconstructed from electron microscopy images and two-dimensional crystallization revealed that hTLR3 ECD forms a horseshoe structure similar to the recently elucidated x-ray structure of the protein expressed in insect cells using baculovirus vectors (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585 and Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980). There are, however, notable differences between the human cell-derived and insect cell-derived structures, including features attributable to glycosylation.


BMC Immunology | 2010

Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages

Amrita Joshi; Sameer R. Oak; Adam J. Hartigan; William G. Finn; Steven L. Kunkel; Karen E. Duffy; Anuk Das; Cory M. Hogaboam

BackgroundInterleukin-33 is a member of the IL-1 cytokine family whose functions are mediated and modulated by the ST2 receptor. IL-33-ST2 expression and interactions have been explored in mouse macrophages but little is known about the effect of IL-33 on human macrophages. The expression of ST2 transcript and protein levels, and IL-33-mediated effects on M1 (i.e. classical activation) and M2 (i.e. alternative activation) chemokine marker expression in human bone marrow-derived macrophages were examined.ResultsHuman macrophages constitutively expressed the membrane-associated (i.e. ST2L) and the soluble (i.e. sST2) ST2 receptors. M2 (IL-4 + IL-13) skewing stimuli markedly increased the expression of ST2L, but neither polarizing cytokine treatment promoted the release of sST2 from these cells. When added to naïve macrophages alone, IL-33 directly enhanced the expression of CCL3. In combination with LPS, IL-33 blocked the expression of the M2 chemokine marker CCL18, but did not alter CCL3 expression in these naive cells. The addition of IL-33 to M1 macrophages markedly increased the expression of CCL18 above that detected in untreated M1 macrophages. Similarly, alternatively activated human macrophages treated with IL-33 exhibited enhanced expression of CCL18 and the M2 marker mannose receptor above that detected in M2 macrophages alone.ConclusionsTogether, these data suggest that primary responses to IL-33 in bone marrow derived human macrophages favors M1 chemokine generation while its addition to polarized human macrophages promotes or amplifies M2 chemokine expression.


Journal of Biological Chemistry | 2007

Biochemical and Functional Analyses of the Human Toll-like Receptor 3 Ectodomain

C. T. Ranjith-Kumar; William P. Miller; Jin Xiong; William K. Russell; Roberta Lamb; Jonathan Santos; Karen E. Duffy; Larissa Cleveland; Mary Park; Kanchan Bhardwaj; Zhaoxiang Wu; David H. Russell; Robert T. Sarisky; M Lamine Mbow; C. Cheng Kao

The structure of the human Toll-like receptor 3 (TLR3) ectodomain (ECD) was recently solved by x-ray crystallography, leading to a number of models concerning TLR3 function (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585; Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980) The structure revealed four pairs of cysteines that are putatively involved in disulfide bond formation, several residues that are predicted to be involved in dimerization between ECD subunits, and surfaces that could bind to poly(I:C). In addition, there are two loops that protrude from the central solenoid structure of the protein. We examined the recombinant TLR3 ECD for disulfide bond formation, poly(I:C) binding, and protein-protein interaction. We also made over 80 mutations in the residues that could affect these features in the full-length TLR3 and examined their effects in TLR3-mediated NF-κB activation. A number of mutations that affected TLR3 activity also affected the ability to act as dominant negative inhibitors of wild type TLR3. Loss of putative RNA binding did not necessarily affect dominant negative activity. All of the results support a model where a dimer of TLR3 is the form that binds RNA and activates signal transduction.


Antimicrobial Agents and Chemotherapy | 2000

Difference in Incidence of Spontaneous Mutations between Herpes Simplex Virus Types 1 and 2

Robert T. Sarisky; Tammy T. Nguyen; Karen E. Duffy; Robert J. Wittrock; Jeffry J. Leary

ABSTRACT Spontaneous mutations within the herpes simplex virus (HSV) genome are introduced by errors during DNA replication. Indicative of the inherent mutation rate of HSV DNA replication, heterogeneous HSV populations containing both acyclovir (ACV)-resistant and ACV-sensitive viruses occur naturally in both clinical isolates and laboratory stocks. Wild-type, laboratory-adapted HSV type 1 (HSV-1) strains KOS and Cl101 reportedly accumulate spontaneous ACV-resistant mutations at a frequency of approximately six to eight mutants per 104plaque-forming viruses (U. B. Dasgupta and W. C. Summers, Proc. Natl. Acad. Sci. USA 75:2378–2381, 1978; J. D. Hall, D. M. Coen, B. L. Fisher, M. Weisslitz, S. Randall, R. E. Almy, P. T. Gelep, and P. A. Schaffer, Virology 132:26–37, 1984). Typically, these resistance mutations map to the thymidine kinase (TK) gene and render the virus TK deficient. To examine this process more closely, a plating efficiency assay was used to determine whether the frequencies of naturally occurring mutations in populations of the laboratory strains HSV-1 SC16, HSV-2 SB5, and HSV-2 333 grown in MRC-5 cells were similar when scored for resistance to penciclovir (PCV) and ACV. Our results indicate that (i) HSV mutants resistant to PCV and those resistant to ACV accumulate at approximately equal frequencies during replication in cell culture, (ii) the spontaneous mutation frequency for the HSV-1 strain SC16 is similar to that previously reported for HSV-1 laboratory strains KOS and Cl101, and (iii) spontaneous mutations in the laboratory HSV-2 strains examined were 9- to 16-fold more frequent than those in the HSV-1 strain SC16. These observations were confirmed and extended for a group of eight clinical isolates in which the HSV-2 mutation frequency was approximately 30 times higher than that for HSV-1 isolates. In conclusion, our results indicate that the frequencies of naturally occurring, or spontaneous, HSV mutants resistant to PCV and those resistant to ACV are similar. However, HSV-2 strains may have a greater propensity to generate drug-resistant mutants than do HSV-1 strains.


Molecular and Cellular Biology | 2008

Single-stranded oligonucleotides can inhibit cytokine production induced by human toll-like receptor 3.

C. T. Ranjith-Kumar; Karen E. Duffy; Jarrat Jordan; A. Eaton-Bassiri; Robert Vaughan; Scott Hoose; Roberta Lamb; Robert T. Sarisky; C. Cheng Kao

ABSTRACT Toll-like receptor 3 (TLR3) can signal the production of a suite of cytokines and chemokines in response to double-stranded RNA (dsRNA) ligands or the dsRNA mimic poly(I-C). Using a human embryonic kidney 293T cell line to express human TLR3, we determined that poly(I-C)-induced signal could be significantly inhibited by single-stranded DNAs (ssDNAs), but not ssRNA or dsDNA. The ssDNA molecules that down-modulated TLR3 signaling did not affect TLR4 and do not require the hypomethylated CpG motif found in TLR9 ligands. The degree of modulation can be altered by the length, base sequence, and modification state of the ssDNAs. An inhibitory ssDNA was found to colocalize with TLR3 in transfected cells and in a cell line that naturally expresses TLR3. The inhibitory ssDNAs can compete efficiently with dsRNA for binding purified TLR3 ectodomains in vitro, while noninhibitory nucleic acids do not. The ssDNAs also decrease the levels of several cytokines produced by the human bronchial epithelial cell line BEAS-2B and by human peripheral blood mononuclear cells in response to poly(I-C) stimulation of native TLR3. These activities indicate that ssDNAs could be used to regulate the inflammatory response through TLR3.


Journal of Molecular Biology | 2012

Lateral Clustering of TLR3:dsRNA Signaling Units Revealed by TLR3ecd:3Fabs Quaternary Structure.

Jinquan Luo; Galina Obmolova; Thomas J. Malia; Sheng-Jiun Wu; Karen E. Duffy; James D. Marion; Jessica K. Bell; Peng Ge; Z. Hong Zhou; Alexey Teplyakov; Yonghong Zhao; Roberta Lamb; Jarrat Jordan; Lani San Mateo; Raymond Sweet; Gary L. Gilliland

Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that overlaps the C-terminal dsRNA binding site and, in biochemical assays, blocks the interaction of TLR3ecd with dsRNA, thus directly antagonizing TLR3 signaling through inhibition of SU formation. In contrast, Fab12 and Fab1068 bind TLR3ecd at sites distinct from the N- and C-terminal regions that interact with dsRNA and do not inhibit minimal SU formation with short dsRNA. Molecular modeling based on the co-structure rationalizes these observations by showing that both Fab12 and Fab1068 prevent lateral clustering of SUs along the length of the dsRNA ligand. This model is further supported by cell-based assay results using dsRNA ligands of lengths that support single and multiple SUs. Thus, their antagonism of TLR3 signaling indicates that lateral clustering of SUs is required for TLR3 signal transduction.


American Journal of Pathology | 2011

Targeting ST2L Potentiates CpG-Mediated Therapeutic Effects in a Chronic Fungal Asthma Model

Hemanth Ramaprakash; Takehiko Shibata; Karen E. Duffy; Ugur B. Ismailoglu; Rachel M. Bredernitz; Ana Paula Moreira; Ana Lucia Coelho; Anuk Das; Natalie Fursov; Geoffrey L. Chupp; Cory M. Hogaboam

IL-33 and its soluble receptor and cell-associated receptor (ST2L) are all increased in clinical and experimental asthma. The present study addressed the hypothesis that ST2L impairs the therapeutic effects of CpG in a fungal model of asthma. C57BL/6 mice were sensitized to Aspergillus fumigatus and challenged via i.t. instillation with live A. fumigatus conidia. Mice were treated with IgG alone, anti-ST2L monoclonal antibody (mAb) alone, CpG alone, IgG plus CpG, or anti-ST2L mAb plus CpG every other day from day 14 to day 28 and investigated on day 28 after conidia. Lung ST2L and toll-like receptor 9 protein expression levels concomitantly increased in a time-dependent manner during fungal asthma. Therapeutic blockade of ST2L with an mAb attenuated key pathological features of this model. At subtherapeutic doses, neither anti-ST2L mAb nor CpG alone affected fungal asthma severity. However, airway hyperresponsiveness, mucus cell metaplasia, peribronchial fibrosis, and fungus retention were markedly reduced in asthmatic mice treated with the combination of both. Whole lung CXCL9 levels were significantly elevated in the combination group but not in the controls. Furthermore, in asthmatic mice treated with the combination therapy, dendritic cells generated significantly greater IL-12p70 with CpG in vitro compared with control dendritic cells. The combination of anti-ST2L mAb with CpG significantly attenuated experimental asthma, suggesting that targeting ST2L might enhance the therapeutic efficacy of CpG during allergic inflammation.


Cellular Immunology | 2011

Novel antagonist antibody to TLR3 blocks poly(I:C)-induced inflammation in vivo and in vitro.

Rachel Bunting; Karen E. Duffy; Roberta Lamb; Lani San Mateo; Karen Smalley; Holly Raymond; Xuesong Liu; Ted Petley; Jamie Fisher; Heena Beck; Richard A. Flavell; Lena Alexopoulou; Christine Ward

Toll-like receptor 3 (TLR3) binds and signals in response to dsRNA and poly(I:C), a synthetic double stranded RNA analog. Activation of TLR3 triggers innate responses that may play a protective or detrimental role in viral infections or in immune-mediated inflammatory diseases through amplification of inflammation. Two monoclonal antibodies, CNTO4685 (rat anti-mouse TLR3) and CNTO5429 (CDRs from CNTO4685 grafted onto a mouse IgG1 scaffold) were generated and characterized. These mAbs bind the extracellular domain of mouse TLR3, inhibit poly(I:C)-induced activation of HEK293T cells transfected with mTLR3, and reduce poly(I:C)-induced production of CCL2 and CXCL10 by primary mouse embryonic fibroblasts. CNTO5429 decreased serum IL-6 and TNFα levels post-intraperitoneal poly(I:C) administration, demonstrating in vivo activity. In summary, specific anti-mTLR3 mAbs have been generated to assess TLR3 antagonism in mouse models of inflammation.


Cellular Immunology | 2010

Toll-like receptor 3 is involved in airway epithelial cell response to nontypeable Haemophilus influenzae.

Fang Teng; Victoria Slavik; Karen E. Duffy; Lani San Mateo; Raul Goldschmidt

Nontypeable Haemophilus influenzae (NTHi) is the etiological agent most frequently associated with bacterial exacerbations of chronic obstructive pulmonary disease (COPD). The present work shows that NTHi strains induced in primary normal human bronchial epithelial cells (NHBE) a cytokine/chemokine response in which CCL-5 and CXCL-10 were predominant. Production of both cytokines was inhibited by an anti-TLR3 monoclonal antibody (mAb) in a dose-dependent manner, but not by control human IgG4 antibodies, thus suggesting a TLR3-dependency of the NTHi stimulation. BEAS-2B, an immortalized human bronchial epithelial cell line, also showed a similar NTHi-induced response that was inhibited by the anti-TLR3 mAb. A BEAS-2B cell line stably expressing TLR3 siRNA showed significantly reduced cytokine/chemokine responses to NTHi stimulation, confirming the role of TLR3 in the response. These results indicate that TLR3 is a key component in the response of human bronchial epithelial cells to NTHi, and suggest that cognate neutralizing mAbs might be a useful therapeutic tool to regulate the inflammatory response.

Collaboration


Dive into the Karen E. Duffy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Lamine Mbow

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anuk Das

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge