Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen E. Koch is active.

Publication


Featured researches published by Karen E. Koch.


The Plant Cell | 1992

Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes.

Karen E. Koch; Kurt D. Nolte; Edwin R. Duke; Donald R. McCarty; Wayne T. Avigne

The two genes encoding sucrose synthase in maize (Sh1 and Sus1) show markedly different responses to changes in tissue carbohydrate status. This enzyme is widely regarded as pivotal to sucrose partitioning, import, and/or metabolism by developing plant organs. Excised maize root tips were incubated for varying periods in different sugars and a range of concentrations. The Sh1 mRNA was maximally expressed under conditions of limited carbohydrate supply (~0.2% glucose). In contrast, Sus1 transcript levels were low or nondetectable under sugar-depleted conditions and peaked at 10-fold greater glucose concentrations (2.0%). Responses to other metabolizable sugars were similar, but L-glucose and elevation of osmolarity with mannitol had little effect. Plentiful sugar supplies thus increased expression of Sus1, whereas reduced sugar availability enhanced Sh1. At the protein level, shifts in abundance of subunits encoded by Sh1 and Sus1 were much less pronounced but corresponded to changes in respective mRNA levels. Although total enzyme activity did not show net change, cellular localization of sucrose synthase protein was markedly altered. In intact roots, sucrose synthase was most prevalent in the stele and apex. In contrast, sugar depletion favored accumulation in peripheral cells, whereas high sugar levels resulted in elevated expression in all cell types. The differential response of the two sucrose synthase genes to sugars provides a potential mechanism for altering the pattern of enzyme distribution in response to changing carbohydrate status and also for adjusting the sucrose-metabolizing capacity of importing cells relative to levels of available photosynthetic products.


Plant Physiology | 2002

Soluble Invertase Expression Is an Early Target of Drought Stress during the Critical, Abortion-Sensitive Phase of Young Ovary Development in Maize

Mathias Neumann Andersen; Folkard Asch; Yong Wu; Christian R. Jensen; Henrik Næsted; V.O. Mogensen; Karen E. Koch

To distinguish their roles in early kernel development and stress, expression of soluble (Ivr2) and insoluble (Incw2) acid invertases was analyzed in young ovaries of maize (Zea mays) from 6 d before (−6 d) to 7 d after pollination (+7 d) and in response to perturbation by drought stress treatments. The Ivr2 soluble invertase mRNA was more abundant than the Incw2 mRNA throughout pre- and early post-pollination development (peaking at +3 d). In contrast,Incw2 mRNAs increased only after pollination. Drought repression of the Ivr2 soluble invertase also preceded changes in Incw2, with soluble activity responding before pollination (−4 d). Distinct profiles of Ivr2and Incw2 mRNAs correlated with respective enzyme activities and indicated separate roles for these invertases during ovary development and stress. In addition, the drought-induced decrease and developmental changes of ovary hexose to sucrose ratio correlated with activity of soluble but not insoluble invertase. Ovary abscisic acid levels were increased by severe drought only at −6 d and did not appear to directly affect Ivr2 expression. In situ analysis showed localized activity and Ivr2 mRNA for soluble invertase at sites of phloem-unloading and expanding maternal tissues (greatest in terminal vascular zones and nearby cells of pericarp, pedicel, and basal nucellus). This early pattern of maternal invertase localization is clearly distinct from the well-characterized association of insoluble invertase with the basal endosperm later in development. This localization, the shifts in endogenous hexose to sucrose environment, and the distinct timing of soluble and insoluble invertase expression during development and stress collectively indicate a key role and critical sensitivity of the Ivr2soluble invertase gene during the early, abortion-susceptible phase of development.


Plant Physiology | 1993

Companion-Cell Specific Localization of Sucrose Synthase in Zones of Phloem Loading and Unloading

Kurt D. Nolte; Karen E. Koch

An immunohistochemical approach was used in maize (Zea mays) and citrus (Citrus paradisi) to address the previously noted association between sucrose synthase and vascular bundles and to determine the localization of the low but detectable levels of sucrose synthase that remain in leaves after the import-export transition. Sucrose synthase protein was immunolocalized at the light microscope level using paraffin sections reacted with rabbit sucrose synthase polyclonal antisera and gold-conjugated goat anti-rabbit immunoglobulin G. Immunolabel was specifically observed in phloem companion cells of minor and intermediate veins in mature leaves of both species. Similar localization was apparent in the midrib of mature citrus leaves, with additional labeling in selected files of phloem parenchyma cells. A clear companion-cell specificity was evident in the phloem unloading zone of citrus fruit, where high activity of sucrose synthase has been demonstrated in vascular bundles during periods of rapid import. Sucrose synthase protein was not associated with adjacent cells surrounding the vascular strands in this tissue. The companion-cell specificity of sucrose synthase in phloem of both importing and exporting structures of these diverse species implies that this may be a widespread association and underscores its potential importance to the physiology of vascular bundles.


The Plant Cell | 1996

A Similar Dichotomy of Sugar Modulation and Developmental Expression Affects Both Paths of Sucrose Metabolism: Evidence from a Maize Invertase Gene Family.

Jian Xu; Wayne T. Avigne; Donald R. McCarty; Karen E. Koch

Invertase and sucrose synthase catalyze the two known paths for the first step in carbon use by sucrose-importing plant cells. The hypothesis that sugar-modulated expression of these genes could provide a means of import adjustment was initially suggested based on data from sucrose synthases alone; however, this hypothesis remained largely conjectural without critical evidence for invertases. Toward this end, a family of maize invertases was cloned and characterized. Here, we show that invertases are indeed sugar modulated and, surprisingly, like the sucrose synthase genes, fall into two classes with contrasting sugar responses. In both families, one class of genes is upregulated by increasing carbohydrate supply (Sucrose synthase1 [Sus1] and Invertase2 [Ivr2]), whereas a second class in the same family is repressed by sugars and upregulated by depletion of this resource (Shrunken1 [Sh1] and Invertase1 [Ivr1]). The two classes also display differential expression during development, with sugar-enhanced genes (Sus1 and Ivr2) expressed in many importing organs and sugar-repressed, starvation-tolerant genes (Sh1 and Ivr1) upregulated primarily during reproductive development. Both the Ivr1 and Ivr2 invertase mRNAs are abundant in root tips, very young kernels, silk, anthers, and pollen, where a close relationship is evident between changes in message abundance and soluble invertase activity. During development, patterns of expression shift as assimilate partitioning changes from elongating silks to newly fertilized kernels. Together, the data support a model for integrating expression of genes differentially responsive to carbohydrate availability (i.e., feast and famine conditions) with developmental signals. The demonstration that similar regulatory patterns occur in both paths of sucrose metabolism indicates a potential to influence profoundly the adjustment of carbon resource allocation.


Plant Physiology | 2009

Genetic Resources for Maize Cell Wall Biology

Bryan W. Penning; Charles T. Hunter; Reuben Tayengwa; Andrea L. Eveland; Christopher K. Dugard; Anna T. Olek; Wilfred Vermerris; Karen E. Koch; Donald R. McCarty; Mark F. Davis; Steven R. Thomas; Maureen C. McCann; Nicholas C. Carpita

Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.


Plant Physiology | 2007

Transcript Profiling by 3'-Untranslated Region Sequencing Resolves Expression of Gene Families

Andrea L. Eveland; Donald R. McCarty; Karen E. Koch

Differences in gene expression underlie central questions in plant biology extending from gene function to evolutionary mechanisms and quantitative traits. However, resolving expression of closely related genes (e.g. alleles and gene family members) is challenging on a genome-wide scale due to extensive sequence similarity and frequently incomplete genome sequence data. We present a new expression-profiling strategy that utilizes long-read, high-throughput sequencing to capture the information-rich 3′-untranslated region (UTR) of messenger RNAs (mRNAs). Resulting sequences resolve gene-specific transcripts independent of a sequenced genome. Analysis of approximately 229,000 3′-anchored sequences from maize (Zea mays) ovaries identified 14,822 unique transcripts represented by at least two sequence reads. Total RNA from ovaries of drought-stressed wild-type and viviparous-1 mutant plants was used to construct a multiplex cDNA library. Each sample was labeled by incorporating one of 16 unique three-base key codes into the 3′-cDNA fragments, and combined samples were sequenced using a GS 20 454 instrument. Transcript abundance was quantified by frequency of sequences identifying each unique mRNA. At least 202 unique transcripts showed highly significant differences in abundance between wild-type and mutant samples. For a subset of mRNAs, quantitative differences were validated by real-time reverse transcription-polymerase chain reaction. The 3′-UTR profile resolved 12 unique cellulose synthase (CesA) transcripts in maize ovaries and identified previously uncharacterized members of a histone H1 gene family. In addition, this method resolved nearly identical paralogs, as illustrated by two auxin-repressed, dormancy-associated (Arda) transcripts, which showed reciprocal mRNA abundance in wild-type and mutant samples. Our results demonstrate the potential of 3′-UTR profiling for resolving gene- and allele-specific transcripts.


Frontiers in Plant Science | 2013

Regulation of assimilate import into sink organs: update on molecular drivers of sink strength

Saadia Bihmidine; Charles T. Hunter; Christine E Johns; Karen E. Koch; David M. Braun

Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INVs), not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell cycle and cell division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive “feast genes,” they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength in diverse systems.


BMC Genomics | 2007

Sequence-indexed mutations in maize using the UniformMu transposon-tagging population

A. Mark Settles; David R. Holding; Bao-Cai Tan; Susan Latshaw; Juan Liu; Masaharu Suzuki; Li Li; Brent A O'Brien; Diego S. Fajardo; Ewa Wroclawska; Chi-Wah Tseung; Jinsheng Lai; Charles T. Hunter; Wayne T. Avigne; John Baier; Joachim Messing; L. Curtis Hannah; Karen E. Koch; Philip W. Becraft; Brian A. Larkins; Donald R. McCarty

BackgroundGene knockouts are a critical resource for functional genomics. In Arabidopsis, comprehensive knockout collections were generated by amplifying and sequencing genomic DNA flanking insertion mutants. These Flanking Sequence Tags (FSTs) map each mutant to a specific locus within the genome. In maize, FSTs have been generated using DNA transposons. Transposable elements can generate unstable insertions that are difficult to analyze for simple knockout phenotypes. Transposons can also generate somatic insertions that fail to segregate in subsequent generations.ResultsTransposon insertion sites from 106 UniformMu FSTs were tested for inheritance by locus-specific PCR. We confirmed 89% of the FSTs to be germinal transposon insertions. We found no evidence for somatic insertions within the 11% of insertion sites that were not confirmed. Instead, this subset of insertion sites had errors in locus-specific primer design due to incomplete or low-quality genomic sequences. The locus-specific PCR assays identified a knockout of a 6-phosphogluconate dehydrogenase gene that co-segregates with a seed mutant phenotype. The mutant phenotype linked to this knockout generates novel hypotheses about the role for the plastid-localized oxidative pentose phosphate pathway during grain-fill.ConclusionWe show that FSTs from the UniformMu population identify stable, germinal insertion sites in maize. Moreover, we show that these sequence-indexed mutations can be readily used for reverse genetic analysis. We conclude from these data that the current collection of 1,882 non-redundant insertion sites from UniformMu provide a genome-wide resource for reverse genetics.


Plant Physiology | 2012

Diverse Roles of Strigolactone Signaling in Maize Architecture and the Uncoupling of a Branching-Specific Subnetwork

Jiahn Chou Guan; Karen E. Koch; Masaharu Suzuki; Shan Wu; Susan Latshaw; Tanya Petruff; Charles Goulet; Harry J. Klee; Donald R. McCarty

Strigolactones (SLs) control lateral branching in diverse species by regulating transcription factors orthologous to Teosinte branched1 (Tb1). In maize (Zea mays), however, selection for a strong central stalk during domestication is attributed primarily to the Tb1 locus, leaving the architectural roles of SLs unclear. To determine how this signaling network is altered in maize, we first examined effects of a knockout mutation in an essential SL biosynthetic gene that encodes CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8), then tested interactions between SL signaling and Tb1. Comparative genome analysis revealed that maize depends on a single CCD8 gene (ZmCCD8), unlike other panicoid grasses that have multiple CCD8 paralogs. Function of ZmCCD8 was confirmed by transgenic complementation of Arabidopsis (Arabidopsis thaliana) max4 (ccd8) and by phenotypic rescue of the maize mutant (zmccd8::Ds) using a synthetic SL (GR24). Analysis of the zmccd8 mutant revealed a modest increase in branching that contrasted with prominent pleiotropic changes that include (1) marked reduction in stem diameter, (2) reduced elongation of internodes (independent of carbon supply), and (3) a pronounced delay in development of the centrally important, nodal system of adventitious roots. Analysis of the tb1 zmccd8 double mutant revealed that Tb1 functions in an SL-independent subnetwork that is not required for the other diverse roles of SL in development. Our findings indicate that in maize, uncoupling of the Tb1 subnetwork from SL signaling has profoundly altered the balance between conserved roles of SLs in branching and diverse aspects of plant architecture.


Journal of Experimental Botany | 1996

Effect of environmental factors on whole plant assimilate partitioning and associated gene expression

Donald R. Geiger; Karen E. Koch; Wen-Jang Shieh

Partitioning of assimilated carbon among sink organs is a critical factor that controls the rate and pattern of plant growth. Time-course measurements of plant and organ growth rates are useful for determining how regulation of carbon partitioning controls plant growth. Measuring growth rates over a 24 h period reveals the current pattern of carbon partitioning that can be used to predict growth rates of specific sinks. Comparison of growth rates among sinks under defined conditions can point out key factors that regulate partitioning of recently assimilated carbon among sinks. Internal control of carbon partitioning by developmental programmes regulates the timing and site of carbon distribution among developing parts, thereby establishing the adaptive traits of a species, cultivar or transgenic construct. Regulation of partitioning in response to environmental factors establishes or restores allometric growth among plant parts and functional balance between the supply and use of carbon. Environmental stress often restricts resource availability while successful acclimation sets in motion processes that restore the supply. A key mechanism contributing to regulation of carbon partitioning is an expression of genes that control activity of the enzymes which initiate sucrose metabolism at specific sites and stages of ontogeny.

Collaboration


Dive into the Karen E. Koch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Wu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shan Wu

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge