Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen E. Mock is active.

Publication


Featured researches published by Karen E. Mock.


Molecular Ecology | 2008

Clonal dynamics in western North American aspen (Populus tremuloides)

Karen E. Mock; Carol A. Rowe; Mevin B. Hooten; Jennifer DeWoody; Valerie D. Hipkins

Clonality is a common phenomenon in plants, allowing genets to persist asexually for much longer periods of time than ramets. The relative frequency of sexual vs. asexual reproduction determines long‐term dominance and persistence of clonal plants at the landscape scale. One of the most familiar and valued clonal plants in North America is aspen (Populus tremuloides). Previous researchers have suggested that aspen in xeric landscapes of the intermountain west represent genets of great chronological age, maintained via clonal expansion in the near absence of sexual reproduction. We synthesized microsatellite data from 1371 ramets in two large sampling grids in Utah. We found a surprisingly large number of distinct genets, some covering large spatial areas, but most represented by only one to a few individual ramets at a sampling scale of 50 m. In general, multi‐ramet genets were spatially cohesive, although some genets appear to be fragmented remnants of much larger clones. We conclude that recent sexual reproduction in these landscapes is a stronger contributor to standing genetic variation at the population level than the accumulation of somatic mutations, and that even some of the spatially large clones may not be as ancient as previously supposed. Further, a striking majority of the largest genets in both study areas had three alleles at one or more loci, suggesting triploidy or aneuploidy. These genets tended to be spatially clustered but not closely related. Together, these findings substantially advance our understanding of clonal dynamics in western North American aspen, and set the stage for a broad range of future studies.


Molecular Ecology | 2006

Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae)

Karen E. Mock; Barbara J. Bentz; Eric M. O'Neill; Jer Pin Chong; J. Orwin; Michael E. Pfrender

The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large‐scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae occupying different host trees in common localities, and to determine whether there was molecular evidence for a past demographic expansion. Using a combination of amplified fragment length polymorphism (AFLP) and mitochondrial sequencing analyses, we found evidence of genetic structuring among populations that followed a broad isolation‐by‐distance pattern. Our results suggest that the geographical pattern of gene flow follows the core distribution of the principal D. ponderosae host species, around rather than across the Great Basin and Mojave Deserts. Patterns of haplotype diversity and divergence were consistent with a range‐wide population expansion. This signal was particularly pronounced in the northern part of the species’ range, where outbreak activity is currently increasing. Using AFLP markers, we were unable to detect significant differences among groups of insects sampled from different host trees in common locations. Incidentally, we found that a large proportion of the polymorphic AFLP markers were gender‐specific, occurring only in males. While we did not include these markers in our analyses, this finding warrants further investigation.


Biological Invasions | 2012

Genetic diversity, reproductive mode, and dispersal differ between the cryptic invader, Phragmites australis, and its native conspecific

Karin M. Kettenring; Karen E. Mock

Genetic diversity and reproductive mode can control whether an introduced species becomes invasive. Here we use genetic tools to compare the non-native, invasive Phragmites australis to its native conspecific, P. australis subsp. americanus, in wetlands of Utah and southern Idaho. We found striking differences in genetic structuring, population diversity, and mode of reproduction between the two lineages. Non-native P. australis exhibited substantially more genetic homogeneity among populations, greater local genet richness, greater genetic diversity among individuals, and smaller average clone size compared to the native lineage. These findings suggest that non-native P. australis relies more heavily on sexual reproduction and disperses pollen and/or seeds more widely than native P. australis. We also found no evidence of hybridization between the two lineages, nor did we find evidence of local extirpations of native by non-native P. australis based on historical collection sites we revisited. Given the ability of non-native P. australis to disperse widely by seeds, we recommend careful monitoring of critical wetland habitat to detect new non-native P. australis invasions and incorporating new practices into Phragmites management that limit sexual reproduction.


Conservation Genetics | 2004

Assessing losses of genetic diversity due to translocation: long-term case histories in Merriam's turkey (Meleagris gallopavo merriami)

Karen E. Mock; E. K. Latch; Olin E. Rhodes Jr.

Translocation is a widely used tool in wildlife management, but populations established as a result of translocations may be subject to a range of genetic problems, including loss of genetic diversity and founder effects. The genetic impact of single translocation events can be difficult to assess because of complex management histories in translocated or source populations. Here we use molecular markers to assess the genetic impact of three well-documented translocation events, each occurring between 42 and 53 years ago and each originating from a native, extant source population that we also included in our study. Comparing translocated populations to their sources, we found genetic evidence of a recent bottleneck in all three translocated populations, including one which is now a very large, productive population. Based on our results, we recommend caution in (1) using short term census data to assess the long term success of a translocation and (2) conducting serial translocations (i.e., using translocated populations as the source for other translocations), which could exacerbate a genetic bottleneck. We also used the data on translocated populations to investigate the relative utility of three bottleneck detection methods. With this dataset, only assessment of the modal allele frequency distribution, described by Luikart et al. [Journal of Heredity, 89, 238–247 (1998)], provided evidence of a bottleneck in the absence of source population data.


Molecular Ecology | 2004

Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah

Karen E. Mock; J. C. Brim-Box; Mark P. Miller; M. E. Downing; Walter R. Hoeh

Populations of the freshwater mussel genus Anodonta appear to be in a state of rapid decline in western North America, following a trend that unfortunately seems to be prevalent among these animals (Mollusca: Unionoida). Here we describe the patterns of molecular divergence and diversity among Anodonta populations in the Bonneville Basin, a large sub‐basin of the Great Basin in western North America. Using amplified fragment length polymorphism (AFLP) analysis, we found a striking lack of nuclear diversity within some of these populations, along with a high degree of structuring among populations (FST = 0.61), suggesting post‐Pleistocene isolation, due either to a long‐term loss of hydrologic connectivity among populations or to more recent fish introductions. We also found evidence of recent hybridization in one of these populations, possibly mediated by fish‐stocking practices. Using mitochondrial sequence data, we compared the Bonneville Basin populations to Anodonta in several other drainages in western North America. We found a general lack of resolution in these phylogenetic reconstructions, although there was a tendency for the Bonneville Basin Anodonta (tentatively A. californiensis) to cluster with A. oregonensis from the adjacent Lahontan Basin in Nevada. We recommend further investigation of anthropogenic factors that may be contributing to the decline of western Anodonta and a broad‐scale analysis and synthesis of genetic and morphological variation among Anodonta in western North America.


Western North American Naturalist | 2008

“Pando” lives: molecular genetic evidence of a giant aspen clone in central Utah

Jennifer DeWoody; Carol A. Rowe; Valerie D. Hipkins; Karen E. Mock

Abstract While clones of trembling aspen (Populus tremuloides, Michx.) in the Intermountain West of North America are expected to be large, one putative genet in central Utah, identified from morphological evidence, has garnered particular attention for its size, even gaining the nickname “Pando” (Latin for “I spread”). In order to determine if a single genetic individual coincides with the morphological boundary of “Pando,” we sampled 209 stems on a 50-m grid throughout the putative clone for analysis at 7 microsatellite loci. We have identified a single genetic entity concurrent with that described from morphological characteristics. Spatial analyses indicate that the clone covers approximately 43.6 ha. Surprisingly, an additional 40 genotypes were identified adjacent to the putative clone, indicating that genet diversity may be high in the stand as a whole. In confirming the existence of the “Pando” clone, we suggest that this organism will provide valuable opportunities to study important biological processes such as clonal growth, somatic mutation, and senescence.


Evolutionary Ecology | 2011

Genetic architecture and phenotypic plasticity of thermally-regulated traits in an eruptive species, Dendroctonus ponderosae

Barbara J. Bentz; Ryan R. Bracewell; Karen E. Mock; Michael E. Pfrender

Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.


Molecular Ecology | 2012

Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal

G. D. N. Gayathri Samarasekera; Nicholas V. Bartell; B. Staffan Lindgren; Janice E. K. Cooke; Corey S. Davis; Patrick M. A. James; David W. Coltman; Karen E. Mock; Brent W. Murray

Environmental change has a wide range of ecological consequences, including species extinction and range expansion. Many studies have shown that insect species respond rapidly to climatic change. A mountain pine beetle epidemic of record size in North America has led to unprecedented mortality of lodgepole pine, and a significant range expansion to the northeast of its historic range. Our goal was to determine the spatial genetic variation found among outbreak population from which genetic structure, and dispersal patterns may be inferred. Beetles from 49 sampling locations throughout the outbreak area in western Canada were analysed at 13 microsatellite loci. We found significant north‐south population structure as evidenced by: (i) Bayesian‐based analyses, (ii) north‐south genetic relationships and diversity gradients; and (iii) a lack of isolation‐by‐distance in the northernmost cluster. The north‐south structure is proposed to have arisen from the processes of postglacial colonization as well as recent climate‐driven changes in population dynamics. Our data support the hypothesis of multiple sources of origin for the outbreak and point to the need for population specific information to improve our understanding and management of outbreaks. The recent range expansion across the Rocky Mountains into the jack/lodgepole hybrid and pure jack pine zones of northern Alberta is consistent with a northern British Columbia origin. We detected no loss of genetic variability in these populations, indicating that the evolutionary potential of mountain pine beetle to adapt has not been reduced by founder events. This study illustrates a rapid range‐wide response to the removal of climatic constraints, and the potential for range expansion of a regional population.


Molecular Phylogenetics and Evolution | 2017

Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): Defining modern subfamilies and tribes

Manuel Lopes-Lima; Elsa Froufe; Van Tu Do; Mohamed Ghamizi; Karen E. Mock; Ümit Kebapçi; Olga K. Klishko; Satit Kovitvadhi; Uthaiwan Kovitvadhi; Octávio S. Paulo; John M. Pfeiffer; Morgan E. Raley; Nicoletta Riccardi; Hülya Şereflişan; Ronaldo Sousa; Amílcar Teixeira; Simone Varandas; Xiao-Ping Wu; David T. Zanatta; Alexandra Zieritz; Arthur E. Bogan

Freshwater mussels of the order Unionida are key elements of freshwater habitats and are responsible for important ecological functions and services. Unfortunately, these bivalves are among the most threatened freshwater taxa in the world. However, conservation planning and management are hindered by taxonomic problems and a lack of detailed ecological data. This highlights the urgent need for advances in the areas of systematics and evolutionary relationships within the Unionida. This study presents the most comprehensive phylogeny to date of the larger Unionida family, i.e., the Unionidae. The phylogeny is based on a combined dataset of 1032bp (COI+28S) of 70 species in 46 genera, with 7 of this genera being sequenced for the first time. The resulting phylogeny divided the Unionidae into 6 supported subfamilies and 18 tribes, three of which are here named for the first time (i.e., Chamberlainiini nomen novum, Cristariini nomen novum and Lanceolariini nomen novum). Molecular analyses were complemented by investigations of selected morphological, anatomical and behavioral characters used in traditional phylogenetic studies. No single morphological, anatomical or behavioral character was diagnostic at the subfamily level and few were useful at the tribe level. However, within subfamilies, many tribes can be recognized based on a subset of these characters. The geographical distribution of each of the subfamilies and tribes is also presented. The present study provides important advances in the systematics of these extraordinary taxa with implications for future ecological and conservation studies.


PLOS ONE | 2012

Widespread Triploidy in Western North American Aspen (Populus tremuloides)

Karen E. Mock; Colin M. Callahan; M. Nurul Islam-Faridi; John D. Shaw; Hardeep S. Rai; Stewart C. Sanderson; Carol A. Rowe; Ronald J. Ryel; Michael D. Madritch; Richard Scott Gardner; Paul G. Wolf

We document high rates of triploidy in aspen (Populus tremuloides) across the western USA (up to 69% of genets), and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species), climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes.

Collaboration


Dive into the Karen E. Mock's collaboration.

Top Co-Authors

Avatar

Barbara J. Bentz

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge