Karen F. Chambers
Norwich Research Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen F. Chambers.
PLOS ONE | 2011
Karen F. Chambers; Joanna Pearson; Naveed Aziz; Peter O'Toole; David R. Garrod; Shona Lang
Background Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures. Methodology/Principal Findings The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability. Conclusions/Significance In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.
Nutrition and Cancer | 2009
Maria H. Traka; Karen F. Chambers; Elizabeth K. Lund; Robert A. Goodlad; Ian T. Johnson; Richard Mithen
Sulforaphane (SF; 4-methylsulfinylbutyl isothiocyanate), a dietary compound derived from broccoli, may exhibit chemopreventive properties by inducing cell cycle arrest via induction of cyclin-dependent kinase inhibitor 1A (p21 waf1/cip1 ), but the exact molecular mechanism has not been determined. Here we evaluate the role of the transcription factor Krüppel-like factor 4 (KLF4) in mediating the induction of p21 waf1/cip1 and cellular differentiation by SF and iberin (IB; 3-methylsulphinyl propyl isothiocyanate), also derived from broccoli. Exposure of Caco-2 and Caco-2/TC7 cells to SF and IB increased expression of both KLF4 and p21 waf1/cip1 , whereas exposure of HT29 cells resulted only in induction of p21 waf1/cip1 . In Caco-2 cells, small interfering RNA knock down of KLF4 expression attenuated induction of p21 waf1/cip1 in response to either SF or IB treatment. Contrary to expectation, prolonged exposure to SF reduced sucrase isomaltase activity, a marker of small intestinal differentiation in Caco-2 cells. Additional support for the SF-mediated induction of p21 waf1/cip1 by KLF4 was obtained from analyses of gastric tissue of Apc Min/+ mice following acute intervention with SF but not from the analyses of other tissue of the intestinal tract. These results suggest that induction of p21 waf1/cip1 by SF or IB may be partly mediated by KLF4 in some colon cancer cells and tissues.
Cell Death & Differentiation | 2009
Joanna Pearson; Siobhan Hughes; Karen F. Chambers; Shona Lang
There are two predominant theories for lumen formation in tissue morphogenesis: cavitation driven by cell death, and membrane separation driven by epithelial polarity. To define the mechanism of lumen formation in prostate acini, we examined both theories in several cell lines grown in three-dimensional (3D) Matrigel culture. Lumen formation occurred early in culture and preceded the expression of cell death markers for apoptosis (active caspase 3) and autophagy (LC-3). Active caspase 3 was expressed by very few cells and inhibition of apoptosis did not suppress lumen formation. Despite LC-3 expression in all cells within a spheroid, this was not associated with cell death. However, expression of a prostate-secretory protein coincided with lumen formation and subsequent disruption of polarized fluid movement led to significant inhibition of lumen formation. This work indicates that lumen formation is driven by the polarized movement of fluids and proteins in 3D prostate epithelial models and not by cavitation.
Journal of Biomedical Science | 2011
Karen F. Chambers; Joanna Pearson; Davide Pellacani; Naveed Aziz; Miodrag Gužvić; Christoph A. Klein; Shona Lang
BackgroundStromal signalling increases the lateral cell adhesions of prostate epithelial cells grown in 3D culture. The aim of this study was to use microarray analysis to identify significant epithelial signalling pathways and genes in this process.MethodsMicroarray analysis was used to identify genes that were differentially expressed when epithelial cells were grown in 3D Matrigel culture with stromal co-culture compared to without stroma. Two culture models were employed: primary epithelial cells (ten samples) and an epithelial cell line (three experiments). A separate microarray analysis was performed on each model system and then compared to identify tissue-relevant genes in a cell line model.ResultsTGF beta signalling was significantly ranked for both model systems and in both models the TGF beta signalling gene SOX4 was significantly down regulated. Analysis of all differentially expressed genes to identify genes that were common to both models found several morphology related gene clusters; actin binding (DIAPH2, FHOD3, ABLIM1, TMOD4, MYH10), GTPase activator activity (BCR, MYH10), cytoskeleton (MAP2, MYH10, TMOD4, FHOD3), protein binding (ITGA6, CD44), proteinaceous extracellular matrix (NID2, CILP2), ion channel/ ion transporter activity (CACNA1C, CACNB2, KCNH2, SLC8A1, SLC39A9) and genes associated with developmental pathways (POFUT1, FZD2, HOXA5, IRX2, FGF11, SOX4, SMARCC1).ConclusionsIn 3D prostate cultures, stromal cells increase lateral epithelial cell adhesions. We show that this morphological effect is associated with gene expression changes to TGF beta signalling, cytoskeleton and anion activity.
Human Gene Therapy | 2010
Norman J. Maitland; Karen F. Chambers; Lindsay J. Georgopoulos; Martha Simpson-Holley; Regina Leadley; Helen Evans; Magnus Essand; Angelika Danielsson; Wytske M. van Weerden; Corrina M.A. de Ridder; Robert Kraaij; Chris H. Bangma
Destruction of cancer cells by genetically modified viral and nonviral vectors has been the aim of many research programs. The ability to target cytotoxic gene therapies to the cells of interest is an essential prerequisite, and the treatment has always had the potential to provide better and more long-lasting therapy than existing chemotherapies. However, the potency of these infectious agents requires effective testing systems, in which hypotheses can be explored both in vitro and in vivo before the establishment of clinical trials in humans. The real prospect of off-target effects should be eliminated in the preclinical stage, if current prejudices against such therapies are to be overcome. In this review we have set out, using adenoviral vectors as a commonly used example, to discuss some of the key parameters required to develop more effective testing, and to critically assess the current cellular models for the development and testing of prostate cancer biotherapy. Only by developing models that more closely mirror human tissues will we be able to translate literature publications into clinical trials and hence into acceptable alternative treatments for the most commonly diagnosed cancer in humans.
Human Gene Therapy | 2012
Rachel Adamson; A.A. Frazier; Helen Evans; Karen F. Chambers; Ellen Schenk; Magnus Essand; Richard Birnie; Ragai R. Mitry; Anil Dhawan; Norman J. Maitland
Ad[I/PPT-E1A] is an oncolytic adenovirus that specifically kills prostate cells via restricted replication by a prostate-specific regulatory element. Off-target replication of oncolytic adenoviruses would have serious clinical consequences. As a proposed ex vivo test, we describe the assessment of the specificity of Ad[I/PPT-E1A] viral cytotoxicity and replication in human nonprostate primary cells. Four primary nonprostate cell types were selected to mimic the effects of potential in vivo exposure to Ad[I/PPT-E1A] virus: bronchial epithelial cells, urothelial cells, vascular endothelial cells, and hepatocytes. Primary cells were analyzed for Ad[I/PPT-E1A] viral cytotoxicity in MTS assays, and viral replication was determined by hexon titer immunostaining assays to quantify viral hexon protein. The results revealed that at an extreme multiplicity of infection of 500, unlikely to be achieved in vivo, Ad[I/PPT-E1A] virus showed no significant cytotoxic effects in the nonprostate primary cell types apart from the hepatocytes. Transmission electron microscopy studies revealed high levels of Ad[I/PPT-E1A] sequestered in the cytoplasm of these cells. Adenoviral green fluorescent protein reporter studies showed no evidence for nuclear localization, suggesting that the cytotoxic effects of Ad[I/PPT-E1A] in human primary hepatocytes are related to viral sequestration. Also, hepatocytes had increased amounts of coxsackie adenovirus receptor surface protein. Active viral replication was only observed in the permissive primary prostate cells and LNCaP prostate cell line, and was not evident in any of the other nonprostate cells types tested, confirming the specificity of Ad[I/PPT-E1A]. Thus, using a relevant panel of primary human cells provides a convenient and alternative preclinical assay for examining the specificity of conditionally replicating oncolytic adenoviruses in vivo.
Scientific Reports | 2018
Eman Mohamed Othman Mosaad; Karen F. Chambers; Kathryn Futrega; Judith A. Clements; Michael R. Doran
Treatment following early diagnosis of Prostate cancer (PCa) is increasingly successful, whilst the treatment of advanced and metastatic PCa remains challenging. A major limitation in the development of new therapies is the prediction of drug efficacy using in vitro models. Classic in vitro 2-dimensional (2D) cell monolayer cultures are hypersensitive to anti-cancer drugs. As a result, there has been a surge in the development of platforms that enable three dimensional (3D) cultures thought to better replicate natural physiology and better predict drug efficacy. A deficiency associated with most 3D culture systems is that their complexity reduces the number of replicates and combination therapies that can be feasibly evaluated. Herein, we describe the use of a microwell platform that utilises a nylon mesh to retain 3D micro-tumours in discrete microwells; termed the Microwell-mesh. The Microwell-mesh enables the manufacture of ~150 micro-tumours per well in a 48-well plate, and response to anti-tumour drugs can be readily quantified. Our results demonstrate that 3D micro-tumours, unlike 2D monolayers, are not hypersensitive to Docetaxel or Abiraterone Acetate, providing a superior platform for the evaluation of sequential drug treatment. In summary, the Microwell-mesh provides an efficient 3D micro-tumour platform for single and sequential drug screening.
International Journal of Molecular Sciences | 2018
María-Teresa García-Conesa; Karen F. Chambers; Emilie Combet; Paula Pinto; Mar Garcia-Aloy; Cristina Andres-Lacueva; Sonia de Pascual-Teresa; Pedro Mena; Alexandra Konic Ristic; Wendy J. Hollands; Paul A. Kroon; Ana Rodriguez-Mateos; Geoffrey Istas; Christos A. Kontogiorgis; Dilip K. Rai; Eileen R. Gibney; Christine Morand; Juan Carlos Espín; Antonio González-Sarrías
Understanding interindividual variability in response to dietary polyphenols remains essential to elucidate their effects on cardiometabolic disease development. A meta-analysis of 128 randomized clinical trials was conducted to investigate the effects of berries and red grapes/wine as sources of anthocyanins and of nuts and pomegranate as sources of ellagitannins on a range of cardiometabolic risk biomarkers. The potential influence of various demographic and lifestyle factors on the variability in the response to these products were explored. Both anthocyanin- and ellagitannin-containing products reduced total-cholesterol with nuts and berries yielding more significant effects than pomegranate and grapes. Blood pressure was significantly reduced by the two main sources of anthocyanins, berries and red grapes/wine, whereas waist circumference, LDL-cholesterol, triglycerides, and glucose were most significantly lowered by the ellagitannin-products, particularly nuts. Additionally, we found an indication of a small increase in HDL-cholesterol most significant with nuts and, in flow-mediated dilation by nuts and berries. Most of these effects were detected in obese/overweight people but we found limited or non-evidence in normoweight individuals or of the influence of sex or smoking status. The effects of other factors, i.e., habitual diet, health status or country where the study was conducted, were inconsistent and require further investigation.
Scientific Reports | 2018
Priscilla E. L. Day; Karen F. Chambers; Mark S. Winterbone; Tatiana García-Blanco; David Vauzour; Paul A. Kroon
The liver plays a critical role in food and drug metabolism and detoxification and accordingly influences systemic body homeostasis in health and disease. While the C57BL/6 and ApoE−/− mouse models are widely used to study gene expression changes in liver disease and metabolism, currently there are no validated stably expressed endogenous genes in these models, neither is it known how gene expression varies within and across liver lobes. Here we show regional variations in the expression of Ywhaz, Gak, Gapdh, Hmbs and Act-β endogenous genes across a liver lobe; Using homogeneous samples from the four liver lobes of 6 C57BL/6 mice we tested the stability of 12 endogenous genes and show that Act-β and Eif2-α are the most stably expressed endogenous genes in all four lobes and demonstrate lobular differences in the expression of Abca1 cholesterol efflux gene. These results suggest that sampling from a specified homogeneous powdered liver lobe is paramount in enhancing data reliability and reproducibility. The stability of the 12 endogenous genes was further tested using homogeneous samples of left liver lobes from 20 ApoE−/− mice on standard or high polyphenol diets. Act-β and Ywhaz are suitable endogenous genes for gene expression normalisation in this mouse model.
Cell and Tissue Research | 2018
Kathryn Futrega; Eman Mohamed Othman Mosaad; Karen F. Chambers; William B. Lott; Judith A. Clements; Michael R. Doran
Bone marrow-derived mesenchymal stem/stromal cells (BMSC) may facilitate bone repair through secretion of factors that stimulate endogenous repair processes or through direct contribution to new bone through differentiation into osteoblast-like cells. BMSC microtissue culture and differentiation has been widely explored recently, with high-throughput platforms making large-scale manufacture of microtissues increasingly feasible. Bone-like BMSC microtissues could offer an elegant method to enhance bone repair, especially in small-volume non-union defects, where small diameter microtissues could be delivered orthoscopically. Using a high-throughput microwell platform, our data demonstrate that (1) BMSC in 3D microtissue culture result in tissue compaction, rather than growth, (2) not all mineralised bone-like matrix is incorporated in the bulk microtissue mass and (3) a significant amount of lipid vacuole formation is observed in BMSC microtissues exposed to BMP-2. These factors should be considered when optimising BMSC osteogenesis in microtissues or developing BMSC microtissue-based therapeutic delivery processes.