Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen H. Dingley is active.

Publication


Featured researches published by Karen H. Dingley.


Nutrition and Cancer | 2003

Effect of Dietary Constituents With Chemopreventive Potential on Adduct Formation of a Low Dose of the Heterocyclic Amines PhIP and IQ and Phase II Hepatic Enzymes

Karen H. Dingley; Esther A. Ubick; Marina L. Chiarappa-Zucca; Susan Nowell; Steffen Abel; Susan E. Ebeler; Alyson E. Mitchell; Stephanie A. Burns; Francene M. Steinberg; Andrew J. Clifford

We conducted a study to evaluate dietary chemopreventive strategies to reduce genotoxic effects of the carcinogens 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). PhIP and IQ are heterocyclic amines (HCAs) that are found in cooked meat and may be risk factors for cancer. Typical chemoprevention studies have used carcinogen doses many thousand-fold higher than usual human daily intake. Therefore, we administered a low dose of [14C] PhIPand [3H] IQand utilized accelerator mass spectrometry to quantify PhIP adducts in the liver, colon, prostate, and blood plasma and IQadducts in the liver and blood plasma with high sensitivity. Diets supplemented with phenethylisothiocyanate (PEITC), genistein, chlorophyllin, or lycopene were evaluated for their ability to decrease adduct formation of [14C] PhIPand [3H] IQin rats. We also examined the effect of treatments on the activity of the phase II detoxification enzymes glutathione S-transferase (GST), UDP-glucuronyltransferase (UGT), phenol sulfotransferase (SULT) and quinone reductase (QR). PEITC and chlorophyllin significantly decreased PhIP-DNA adduct levels in all tissues examined, which was reflected by similar changes in PhIP binding to albumin in the blood. In contrast, genistein and lycopene tended to increase PhIP adduct levels. The treatments did not significantly alter the level of IQ-DNA or -protein adducts in the liver.With the exception of lycopene, the treatments had some effect on the activity of one or more hepatic phase II detoxification enzymes. We conclude that PEITC and chlorophyllin are protective of PhIP-induced genotoxicity after a low exposure dose of carcinogen, possibly through modification of HCA metabolism.


Cancer Letters | 1999

Macromolecular adduct formation and metabolism of heterocyclic amines in humans and rodents at low doses

Kenneth W. Turteltaub; Karen H. Dingley; Kellie D. Curtis; Michael A. Malfatti; Robert J. Turesky; R. Colin Garner; James S. Felton; Nicholas P. Lang

2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are heterocyclic amines formed during the cooking of meat and fish. Both are genotoxic in a number of test systems and are carcinogenic in rats and mice. Human exposure to these compounds via dietary sources has been estimated to be under 1 microg/kg body wt. per day, although most laboratory animal studies have been conducted at doses in excess of 10 mg/kg body wt. per day. We are using accelerator mass spectrometry (AMS), a tool for measuring isotopes with attomole sensitivity, to study the dosimetry of protein and DNA adduct formation by low doses of MeIQx and PhIP in rodents and comparing the adduct levels to those formed in humans. The results of these studies show: 1, protein and DNA adduct levels in rodents are dose-dependent; 2, adduct levels in human tissues and blood are generally greater than in rodents administered equivalent doses; and 3, metabolite profiles differ substantially between humans and rodents for both MeIQx and PhIP, with more N-hydroxylation (bioactivation) and less ring oxidation (detoxification) in humans. These data suggest that rodent models do not accurately represent the human response to heterocyclic amine exposure.


Mutation Research | 1997

MeIQx-DNA adduct formation in rodent and human tissues at low doses

Kenneth W. Turteltaub; Robert J. Mauthe; Karen H. Dingley; John S. Vogel; Christopher E. Frantz; R. Colin Garner; Nancy H. Shen

Heterocyclic amines, such as 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), are mutagenic/carcinogenic compounds formed during the cooking of protein-rich foods. Human exposure to MeIQx has been estimated to range from ng/person/day to a few microgram/person/day. In contrast, animal studies have been conducted at doses in excess of 10 mg/kg/day. In order to determine the relevance of high-dose animal data for human exposure, the dose-response curves for [14C]-MeIQx have been determined in rodents at low doses under both single-dose and chronic dosing regimens using the high sensitivity of accelerator mass spectrometry (AMS). To make a direct species comparison, rodent and human colonic MeIQx-DNA adduct levels have been compared following oral administration of [14C]-MeIQx. The results of these studies show: (1) total MeIQx levels are highest in the liver > kidney > pancreas > intestine > blood; (2) MeIQx levels in the liver plateau after 7 days of chronic feeding; (3) hepatic MeIQx-DNA adducts begin to plateau after 2-4 weeks and reach steady-state levels between 4 and 12 weeks on chronic exposures; (4) hepatic DNA adducts generally increase as a linear function of administered dose for a single-dose exposure and as a power function for chronic feeding over a dose range spanning 4 orders of magnitude; (5) human colon DNA adduct levels are approximately 10 times greater than in rodents at the same dose and time point following exposure; and (6) > or = 90% of the MeIQx-DNA adduct in both rodent and human colon appears to be the dG-C8-MeIQx adduct. These studies show that MeIQx is readily available to the tissues for both humans and rodents and that adduct levels are generally linear with administered dose except at high chronic doses where adduct levels begin to plateau slightly. This plateau indicates that linear extrapolation from high-dose studies probably underestimates the amount of DNA damage present in the tissues following low dose. Further, if adducts represent the biologically effective dose, these data show that human colon may be as sensitive to the genotoxic effects of MeIQx as rat liver. The significance of these endpoints to tumor response remains to be determined.


Cancer Research | 2006

The urinary metabolite profile of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine is predictive of colon dna adducts after a low-dose exposure in humans

Michael A. Malfatti; Karen H. Dingley; Susan Nowell-Kadlubar; Esther A. Ubick; Nisha Mulakken; David O. Nelson; Nicholas P. Lang; James S. Felton; Kenneth W. Turteltaub

Epidemiologic evidence indicates that exposure to heterocyclic amines in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of heterocyclic amines, which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of heterocyclic amine bioactivation in humans, the most mass abundant heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers where administered a dietary relevant dose of [(14)C]PhIP 48 to 72 hours before surgery to remove colon tumors. Urine was collected for 24 hours after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All 10 subjects were phenotyped for cytochrome P4501A2 (CYP1A2), N-acetyltransferase 2, and sulfotransferase 1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N(2)-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N(2)-glucuronide had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N(2)-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.


International Journal of Cancer | 1999

Comparison of DNA-adduct and tissue-available dose levels of MeIQx in human and rodent colon following administration of a very low dose

Robert J. Mauthe; Karen H. Dingley; Steven H. Leveson; Stewart P.H.T. Freeman; Robert J. Turesky; R. Colin Garner; Kenneth W. Turteltaub

[2‐14C]2‐amino‐3,8‐dimethylimidazo[4,5‐f]quinoxaline (MeIQx) was administered orally (304 ng/kg body‐weight dose based upon an average 70‐kg‐body‐weight subject) to 5 human colon‐cancer patients (58 to 84 years old), as well as to F344 rats and B6C3F1 mice. Colon tissue was collected from the human subjects at surgery and from the rodents 3.5 to 6 hr after administration. Colon DNA‐adduct levels and tissue available doses were measured by accelerator mass spectrometry (AMS). The mean levels of MeIQx in the histologically normal colon tissue were not different among the human (97 ± 26 pg MeIQx/g), rat (133 ± 15 pg/g) or mouse (78 ± 10 pg/g) tissues; and no difference existed between the levels detected in human normal and tumor tissue (101 ± 15 pg/g). Mean DNA‐adduct levels in normal human colon (26 ± 4 adducts/1012 nucleotides) were significantly greater (p < 0.01) than in rats (17.1 ± 1 adduct/1012 nucleotides) or mice (20.6 ± 0.9 adduct/1012 nucleotides). No difference existed in adduct levels between normal and tumor tissue in humans. These results show that MeIQx forms DNA adducts in human colon at low dose, and that the human colon may be more sensitive to the effects of MeIQx than that of mice or rats. Int. J. Cancer 80:539–545, 1999.


Methods in Enzymology | 2005

Accelerator mass spectrometry for biomedical research.

Karen Brown; Karen H. Dingley; Kenneth W. Turteltaub

Accelerator mass spectrometry (AMS) is the most sensitive method for detecting and quantifying rare long-lived isotopes with high precision. In this chapter, we review the principles underlying AMS-based biomedical studies, focusing on important practical considerations and experimental procedures needed for the detection and quantitation of (14)C- and (3)H-labeled compounds in various experiment types.


Cancer Letters | 1999

Comparative biotransformation studies of MeIQx and PhIP in animal models and humans

R.C. Garner; Tracy Lightfoot; B.C Cupid; D. Russell; J.M Coxhead; W Kutschera; A Priller; W Rom; P Steier; D.J Alexander; S.H Leveson; Karen H. Dingley; R.J Mauthe; Kenneth W. Turteltaub

MeIQx and PhIP are putative carcinogenic heterocyclic amines formed during the cooking of meat and fish. Using accelerator mass spectrometry, we have investigated the metabolism and macromolecule binding of 14C-labelled MeIQx and PhIP in human cancer patients compared to the rat. Following oral administration of MeIQx and PhIP, more DNA adducts were formed in human colon tissue compared with rats. Differences were also observed between rats and humans in the metabolite profile and urine excretion for these compounds. These results suggest humans metabolise heterocyclic amines differently to laboratory rodents and question their use as models of human risk.


Toxicology Letters | 1998

Application of accelerated mass spectrometry (AMS) in DNA adduct quantification and identification.

Kenneth W. Turteltaub; Karen H. Dingley

DNA adducts are nucleotide bases that have been covalently modified by reactive electrophilic chemical intermediates, and have been extensively researched for their role in mutagenesis and carcinogenesis. However, many DNA adduct measurement techniques have difficulty in the quantification of adducts at realistic human exposure levels. We are using the extremely sensitive analytical technique of accelerator mass spectrometry (AMS) to study adducts either at low dose or directly in humans. AMS is a technique for measuring isotope ratios with high selectivity, attomole sensitivity (10(-18) mol) and precision of 0.5-10%, depending on isotope level and preparation method. This sensitivity and precision is being used to study the dose-response, toxicokinetics, and toxicodynamics of DNA adduct formation and removal following administration of very low doses of chemicals.


Chemico-Biological Interactions | 2003

The effects of coffee on enzymes involved in metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo (4,5-b)pyridine in rats

Robert J. Turesky; Janique Richoz; Anne Constable; Kellie D. Curtis; Karen H. Dingley; Kenneth W. Turteltaub

The effects of coffee on the metabolism and genotoxicity of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were investigated. Coffee diminished the bacterial mutagenicity of PhIP in the Ames reversion assay through inhibition of cytochrome P450 1A2 (CYP1A2), a key enzyme involved in the metabolic activation of PhIP. When given as part of the diet (0, 1 or 5% w/w) to male Fischer-344 rats for 2 weeks, coffee affected the expression of hepatic enzymes involved in PhIP metabolism. Coffee increased the expression of CYP1A2 by 16-fold in the 5% coffee-treated group, and approximately half of this inductive effect was attributed to caffeine. Coffee also increased the expression of enzymes involved in the detoxication of PhIP. A 2-fold increase in expression of glutathione S-transferase alpha was observed, UDP-glucuronosyl transferase (UGTs) activities of p-nitrophenol increased 2-fold, while N(2)-and N3-glucuronidation of the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP) increased by 1.3-fold in the 5% coffee-treated over the control group. The amount of PhIP (0.75 mg/kg, 24 h) eliminated in urine as the N(2)-and N3-glucuronide conjugates of HONH-PhIP increased by 1.8- and 2.5-fold, respectively, in the 5% coffee-treated group over control rats, suggesting either increased rates of N-oxidation of PhIP or N-glucuronidation of HONH-PhIP. Despite the strong induction of CYP1A2, there was no increase in PhIP-DNA adduct formation in colon and pancreas while liver adducts decreased by 50% over control animals. These data suggest that the effect of coffee on inhibition of PhIP N-oxidation and ensuing DNA damage is more important in vivo than its effect on induction of PhIP N-hydroxylation.


Electrophoresis | 2001

Attomole quantitation of protein separations with accelerator mass spectrometry.

John S. Vogel; Patrick G. Grant; Bruce A. Buchholz; Karen H. Dingley; Kenneth W. Turteltaub

Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short‐lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long‐lived isotopes such as 14C to sub‐attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1–5%. Micro‐proton‐induced X‐ray emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phopsphorylated loci in gels. Accelerator‐based quantitation is a possible tool for quantifying the genome translation into proteome.

Collaboration


Dive into the Karen H. Dingley's collaboration.

Top Co-Authors

Avatar

Kenneth W. Turteltaub

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Esther A. Ubick

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Karen Brown

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Michael A. Malfatti

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James S. Felton

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nicholas P. Lang

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

John S. Vogel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kristen S. Kulp

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge