Karen H. Gylys
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen H. Gylys.
Neurology | 2008
John M. Ringman; Samuel Younkin; Domenico Praticò; W. Seltzer; Gregory M. Cole; Daniel H. Geschwind; Y. Rodriguez-Agudelo; Barbara Schaffer; Jeffrey A. Fein; Sophie Sokolow; E. R. Rosario; Karen H. Gylys; Arousiak Varpetian; Luis D. Medina; Jeffrey L. Cummings
Background: Persons at risk for familial Alzheimer disease (FAD) provide a model in which biomarkers can be studied in presymptomatic disease. Methods: Twenty-one subjects at risk for presenilin-1 (n = 17) or amyloid precursor protein (n = 4) mutations underwent evaluation with the Clinical Dementia Rating (CDR) scale. We obtained plasma from all subjects and CSF from 11. Plasma (Aβ40, Aβ42, F2-isoprostanes) and CSF (F2-isoprostanes, t-tau, p-tau181, Aβ40, Aβ42, and Aβ42/Aβ40 ratio) levels were compared between FAD mutation carriers (MCs) and noncarriers (NCs). Results: Plasma Aβ42 levels (25.1 pM vs 15.5 pM, p = 0.031) and the ratio of Aβ42/Aβ40 (0.16 vs 0.11, p = 0.045) were higher in presymptomatic MCs. Among MCs, those with CDR scores of 0.5 had lower plasma Aβ42 levels than those with CDR scores of 0 (14.1 pM vs 25.1, p = 0.02). The ratio of Aβ42 to Aβ40 was also reduced in the CSF (0.08 vs 0.15, p = 0.046) of nondemented MCs compared to NCs. Total CSF tau and p-tau181 levels were elevated in presymptomatic FAD MCs. CSF levels of F2-isoprostanes were also elevated in MCs (n = 7, 48.6 pg/mL) compared to NCs (n = 4, 21.6 pg/mL, p = 0.031). Conclusions: Our data indicate that Aβ42 is elevated in plasma in familial Alzheimer disease (FAD) mutation carriers (MCs) and suggests that this level may decrease with disease progression prior to the development of overt dementia. We also demonstrated that the ratio of Aβ42 to Aβ40 was reduced in the CSF of nondemented MCs and that elevations of t-tau and p-tau181 are sensitive indicators of presymptomatic disease. Our finding of elevated F2-isoprostane levels in the CSF of preclinical FAD MCs suggests that oxidative stress occurs downstream to mismetabolism of amyloid precursor protein.
American Journal of Pathology | 2004
Karen H. Gylys; Jeffrey A. Fein; Fusheng Yang; Dorothy J. Wiley; Carol A. Miller; Gregory M. Cole
In an effort to examine changes that precede synapse loss, we have measured amyloid-beta and a series of damage markers in the synaptic compartment of Alzheimers disease (AD) cases. Because localization of events to the terminal region in neurons is problematic with conventional methods, we prepared synaptosomes from samples of cryopreserved human association cortex, and immunolabeled terminals with a procedure for intracellular antigens. Fluorescence was quantified using flow cytometry. The viability dye calcein AM was unchanged in AD terminals compared to controls, and the fraction of large synaptosome particles did not change, although a striking loss of large terminals was observed in some AD cases. The percent positive fraction for a series of pre- and postsynaptic markers was not affected by AD in this cohort. However, the amyloid-beta-positive fraction increased from 16 to 27% (P < 0.02) in terminals from AD cortex. The expression level on a per-terminal basis is indicated in this assay by fluorescence (relative fluorescence units). The fluorescence of presynaptic markers did not change in AD terminals, but PSD-95 fluorescence was decreased by 19% (P < 0.03). Amyloid-beta fluorescence was increased by 132% (P < 0.01), and glial fibrillary acidic protein labeling by 31% (P < 0.01). These results suggest that synapse-associated amyloid-beta is prominent in regions relatively unaffected by AD lesions, and that amyloid accumulation in surviving terminals is accompanied by gliosis and alteration in the postsynaptic structure.
Alzheimer's Research & Therapy | 2012
John M. Ringman; Sally A. Frautschy; Edmond Teng; Aynun N. Begum; Jenny Bardens; Maryam Beigi; Karen H. Gylys; Vladimir Badmaev; Dennis D. Heath; Liana G. Apostolova; Verna Porter; Zeba Vanek; Gad A. Marshall; Gerhard Hellemann; Catherine A. Sugar; Donna Masterman; Thomas J. Montine; Jeffrey L. Cummings; Greg M. Cole
IntroductionCurcumin is a polyphenolic compound derived from the plant Curcuma Long Lin that has been demonstrated to have antioxidant and anti-inflammatory effects as well as effects on reducing beta-amyloid aggregation. It reduces pathology in transgenic models of Alzheimers disease (AD) and is a promising candidate for treating human AD. The purpose of the current study is to generate tolerability and preliminary clinical and biomarker efficacy data on curcumin in persons with AD.MethodsWe performed a 24-week randomized, double blind, placebo-controlled study of Curcumin C3 Complex® with an open-label extension to 48 weeks. Thirty-six persons with mild-to-moderate AD were randomized to receive placebo, 2 grams/day, or 4 grams/day of oral curcumin for 24 weeks. For weeks 24 through 48, subjects that were receiving curcumin continued with the same dose, while subjects previously receiving placebo were randomized in a 1:1 ratio to 2 grams/day or 4 grams/day. The primary outcome measures were incidence of adverse events, changes in clinical laboratory tests and the Alzheimers Disease Assessment Scale - Cognitive Subscale (ADAS-Cog) at 24 weeks in those completing the study. Secondary outcome measures included the Neuropsychiatric Inventory (NPI), the Alzheimers Disease Cooperative Study - Activities of Daily Living (ADCS-ADL) scale, levels of Aβ1-40 and Aβ1-42 in plasma and levels of Aβ1-42, t-tau, p-tau181 and F2-isoprostanes in cerebrospinal fluid. Plasma levels of curcumin and its metabolites up to four hours after drug administration were also measured.ResultsMean age of completers (n = 30) was 73.5 years and mean Mini-Mental Status Examination (MMSE) score was 22.5. One subject withdrew in the placebo (8%, worsened memory) and 5/24 subjects withdrew in the curcumin group (21%, 3 due to gastrointestinal symptoms). Curcumin C3 Complex® was associated with lowered hematocrit and increased glucose levels that were clinically insignificant. There were no differences between treatment groups in clinical or biomarker efficacy measures. The levels of native curcumin measured in plasma were low (7.32 ng/mL).ConclusionsCurcumin was generally well-tolerated although three subjects on curcumin withdrew due to gastrointestinal symptoms. We were unable to demonstrate clinical or biochemical evidence of efficacy of Curcumin C3 Complex® in AD in this 24-week placebo-controlled trial although preliminary data suggest limited bioavailability of this compound.Trial registrationClinicalTrials.gov Identifier: NCT00099710.
American Journal of Pathology | 2008
Jeffrey A. Fein; Sophie Sokolow; Carol A. Miller; Harry V. Vinters; Fusheng Yang; Gregory M. Cole; Karen H. Gylys
The amyloid cascade hypothesis proposes that amyloid beta (Abeta) pathology precedes and induces tau pathology, but the neuropathological connection between these two lesions has not been demonstrated. We examined the regional distribution and co-localization of Abeta and phosphorylated tau (p-tau) in synaptic terminals of Alzheimers disease brains. To quantitatively examine large populations of individual synaptic terminals, flow cytometry was used to analyze synaptosomes prepared from cryopreserved Alzheimers disease tissue. An average 68.4% of synaptic terminals in the Alzheimers disease cohort (n = 11) were positive for Abeta, and 32.3% were positive for p-tau; Abeta and p-tau fluorescence was lowest in cerebellum. In contrast to synaptic p-tau, which was highest in the entorhinal cortex and hippocampus (P = 0.004), synaptic Abeta fluorescence was significantly lower in the entorhinal cortex and hippocampus relative to neocortical regions (P = 0.0003). Synaptic Abeta and p-tau fluorescence was significantly correlated (r = 0.683, P < 0.004), and dual-labeling experiments demonstrated that 24.1% of Abeta-positive terminals were also positive for p-tau, with the highest fraction of dual labeling (39.3%) in the earliest affected region, the entorhinal cortex. Western blotting experiments show a significant correlation between synaptic Abeta levels measured by flow cytometry and oligomeric Abeta species (P < 0.0001). These results showing overlapping Abeta and tau pathology are consistent with a model in which both synaptic loss and dysfunction are linked to a synaptic amyloid cascade within the synaptic compartment.
Neurobiology of Aging | 2007
Karen H. Gylys; Jeffrey A. Fein; Fusheng Yang; Carol A. Miller; Gregory M. Cole
Synapse loss in Alzheimers disease (AD) is poorly understood but evidence suggests it is a key pathological event. In order to precisely detect stable synaptic changes, we have developed methods for flow cytometry analysis of synaptosomes prepared from cryopreserved AD samples, and have previously shown that amyloid-beta (Abeta) accumulates in surviving presynaptic terminals in AD cortex. In the present experiments we have examined amyloid-containing terminals in more detail, first dual labeling synaptosomes from AD cortex for Abeta and a series of markers, and then using quadrant analysis to compare amyloid-positive and amyloid-negative terminals. Amyloid-positive synaptosomes were larger in size than amyloid-negatives (p<0.007), and significant increases were observed in mean fluorescence for the lipid raft markers cholesterol (27%; p<0.0005) and GM1 ganglioside (24%; p<0.005). SNAP-25 immunofluorescence was increased by 31% (p<0.0001) in amyloid-bearing terminals, consistent with a sprouting response to amyloid accumulation. These results suggest that Abeta accumulation in synaptic terminals may underly dysfunction prior to or independent of extracellular amyloid deposition.
Journal of Neurochemistry | 2003
Karen H. Gylys; Jeffrey A. Fein; Aiko M. Tan; Gregory M. Cole
The cellular mechanism by which apolipoprotein E (apoE) affects the pathogenesis of Alzheimers disease (AD) is not understood. We have examined the effect of apolipoprotein E on the internalization of exogenous amyloid‐β 1–40 (Aβ40) into a rat brain crude synaptosomal preparation. Aβ40 peptide in soluble (within 1 h of dilution in buffer) or aggregated (aged 4 days before dilution in buffer) form was pre‐incubated with lipidated apoE then added to synaptosomes; intraterminal amyloid‐β labeling was quantified using flow cytometry following immunolabeling with the anti‐Aβ (10G4) antibody. The number of Aβ‐positive synaptosomes was increased (∼50%) by treatment with a soluble Aβ/apoE mixture compared with treatment with soluble Aβ40 alone. However, when the Aβ was aggregated, less sodium dodecyl sulfate (SDS)‐stable Aβ/apoE complex was formed and the addition of apoE decreased the number of Aβ‐positive terminals. The addition of the lipoprotein‐receptor related protein (LRP) antagonist receptor‐associated protein (RAP) inhibited the apoE‐induced increase in synaptosomal Aβ, and controls treated with trypsin and heparinase confirm intraterminal localization of the majority of the soluble Aβ. The apoE‐mediated increase in Aβ labeling was confirmed in intact cells by immunocytochemistry of dorsal root ganglion (DRG) neurons. These results suggest that complex formation with apoE enhances internalization of soluble Aβ uptake into terminals.
Journal of Biological Chemistry | 2013
Leon M. Tai; Tina Bilousova; Lisa Jungbauer; Stephen K. Roeske; Katherine L. Youmans; Chunjiang Yu; Wayne W. Poon; Lindsey B. Cornwell; Carol A. Miller; Harry V. Vinters; Linda J. Van Eldik; David W. Fardo; Steve Estus; Guojun Bu; Karen H. Gylys; Mary Jo LaDu
Background: An ELISA was developed to determine the role of apoE/Aβ on soluble Aβ accumulation. Results: In AD transgenic mouse brain and human synaptosomes and CSF, levels of soluble apoE/Aβ are lower and oligomeric Aβ levels are higher with APOE4 and AD. Conclusion: Isoform-specific apoE/Aβ levels modulate soluble oligomeric Aβ levels. Significance: ApoE/Aβ and oligomeric Aβ represent a mechanistic approach to AD biomarkers. Human apolipoprotein E (apoE) isoforms may differentially modulate amyloid-β (Aβ) levels. Evidence suggests physical interactions between apoE and Aβ are partially responsible for these functional effects. However, the apoE/Aβ complex is not a single static structure; rather, it is defined by detection methods. Thus, literature results are inconsistent and difficult to interpret. An ELISA was developed to measure soluble apoE/Aβ in a single, quantitative method and was used to address the hypothesis that reduced levels of soluble apoE/Aβ and an increase in soluble Aβ, specifically oligomeric Aβ (oAβ), are associated with APOE4 and AD. Previously, soluble Aβ42 and oAβ levels were greater with APOE4 compared with APOE2/APOE3 in hippocampal homogenates from EFAD transgenic mice (expressing five familial AD mutations and human apoE isoforms). In this study, soluble apoE/Aβ levels were lower in E4FAD mice compared with E2FAD and E3FAD mice, thus providing evidence that apoE/Aβ levels isoform-specifically modulate soluble oAβ clearance. Similar results were observed in soluble preparations of human cortical synaptosomes; apoE/Aβ levels were lower in AD patients compared with controls and lower with APOE4 in the AD cohort. In human CSF, apoE/Aβ levels were also lower in AD patients and with APOE4 in the AD cohort. Importantly, although total Aβ42 levels decreased in AD patients compared with controls, oAβ levels increased and were greater with APOE4 in the AD cohort. Overall, apoE isoform-specific formation of soluble apoE/Aβ modulates oAβ levels, suggesting a basis for APOE4-induced AD risk and a mechanistic approach to AD biomarkers.
JAMA Neurology | 2012
John M. Ringman; Howard Schulman; Chris Becker; Ted Jones; Yuchen Bai; Fred Immermann; Gregory M. Cole; Sophie Sokolow; Karen H. Gylys; Daniel H. Geschwind; Jeffrey L. Cummings; Hong I. Wan
OBJECTIVE To identify cerebrospinal fluid (CSF) protein changes in persons who will develop familial Alzheimer disease (FAD) due to PSEN1 and APP mutations, using unbiased proteomics. DESIGN We compared proteomic profiles of CSF from individuals with FAD who were mutation carriers (MCs) and related noncarriers (NCs). Abundant proteins were depleted and samples were analyzed using liquid chromatography-electrospray ionization-mass spectrometry on a high-resolution time-of-flight instrument. Tryptic peptides were identified by tandem mass spectrometry. Proteins differing in concentration between the MCs and NCs were identified. SETTING A tertiary dementia referral center and a proteomic biomarker discovery laboratory. PARTICIPANTS Fourteen FAD MCs (mean age, 34.2 years; 10 are asymptomatic, 12 have presenilin-1 [PSEN1 ] gene mutations, and 2 have amyloid precursor protein [APP ] gene mutations) and 5 related NCs (mean age, 37.6 years). RESULTS Fifty-six proteins were identified, represented by multiple tryptic peptides showing significant differences between MCs and NCs (46 upregulated and 10 downregulated); 40 of these proteins differed when the analysis was restricted to asymptomatic individuals. Fourteen proteins have been reported in prior proteomic studies in late-onset AD, including amyloid precursor protein, transferrin, α(1)β-glycoprotein, complement components, afamin precursor, spondin 1, plasminogen, hemopexin, and neuronal pentraxin receptor. Many other proteins were unique to our study, including calsyntenin 3, AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 4 glutamate receptor, CD99 antigen, di- N-acetyl-chitobiase, and secreted phosphoprotein 1. CONCLUSIONS We found much overlap in CSF protein changes between individuals with presymptomatic and symptomatic FAD and those with late-onset AD. Our results are consistent with inflammation and synaptic loss early in FAD and suggest new presymptomatic biomarkers of potential usefulness in drug development.
Journal of Neurochemistry | 2015
Sophie Sokolow; Kristen M. Henkins; Tina Bilousova; Bianca Gonzalez; Harry V. Vinters; Carol A. Miller; Lindsey B. Cornwell; Wayne W. Poon; Karen H. Gylys
The microtubule‐associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimers disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal‐specific antibodies show that in many synaptosome samples tau lacks a C‐terminus. Flow cytometry experiments to quantify the extent of C‐terminal truncation reveal that only 15–25% of synaptosomes are positive for intact C‐terminal tau. Potassium‐induced depolarization demonstrates release of tau and tau fragments from pre‐synaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well‐positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the pre‐synaptic compartment in AD.
Journal of Neuroscience Research | 2000
Karen H. Gylys; Jeffrey A. Fein; Gregory M. Cole
Flow cytometry, which definitively identifies each particle as positive or negative with respect to fluorescent markers, is used to characterize the P‐2 fraction (crude synaptosomal fraction) with respect to primary components, size, and intactness. Particle size ranged from a few tenths of a μm to greater than 4.5 μm. The viable dye calcein AM labeled 90% of the preparation, indicating that the majority of particles were intact and esterase‐positive. 66% of the P‐2 fraction is neuronal in origin, as demonstrated by labeling with an antibody directed against SNAP‐2. An antibody directed against glial fibrillary acidic protein (GFAP) labeled 35% of the particles in this preparation. The mitochondrial dye nonyl acridine orange (NAO) stained 74% of particles, indicating intra‐ and extrasynaptosomal mitochondria. Gating analysis reveals that SNAP‐25 is enriched in the larger particles. These results suggest that flow cytometry may be used to take advantage of the increased viability, yield, and convenience of the P‐2 fraction for studies of nerve terminal function. J. Neurosci. Res. 61:186–192, 2000.