Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Hanley is active.

Publication


Featured researches published by Karen Hanley.


Journal of Clinical Investigation | 2006

In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development

Masahiro Goto; Karen Hanley; Josep Marcos; Peter J. Wood; Sarah Wright; Anthony D. Postle; Iain T. Cameron; J. Ian Mason; David I. Wilson; Neil A. Hanley

In humans, sexual differentiation of the external genitalia is established at 7-12 weeks post conception (wpc). During this period, maintaining the appropriate intrauterine hormone environment is critical. In contrast to other species, this regulation extends to the human fetal adrenal cortex, as evidenced by the virilization that is associated with various forms of congenital adrenal hyperplasia. The mechanism underlying these clinical findings has remained elusive. Here we show that the human fetal adrenal cortex synthesized cortisol much earlier than previously documented, an effect associated with transient expression of the orphan nuclear receptor nerve growth factor IB-like (NGFI-B) and its regulatory target, the steroidogenic enzyme type 2 3beta-hydroxysteroid dehydrogenase (HSD3B2). This cortisol biosynthesis was maximal at 8-9 wpc under the regulation of ACTH. Negative feedback was apparent at the anterior pituitary corticotrophs. ACTH also stimulated the adrenal gland to secrete androstenedione and testosterone. In concert, these data promote a distinctive mechanism for normal human development whereby cortisol production, determined by transient NGFI-B and HSD3B2 expression, provides feedback at the anterior pituitary to modulate androgen biosynthesis and safeguard normal female sexual differentiation.


Journal of Clinical Investigation | 1997

Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier.

Karen Hanley; Y Jiang; Debra Crumrine; N M Bass; R Appel; Peter M. Elias; M L Williams; Kenneth R. Feingold

Members of the superfamily of nuclear hormone receptors which are obligate heterodimeric partners of the retinoid X receptor may be important in epidermal development. Here, we examined the effects of activators of the receptors for vitamin D3 and retinoids, and of the peroxisome proliferator activated receptors (PPARs) and the farnesoid X-activated receptor (FXR), on the development of the fetal epidermal barrier in vitro. Skin explants from gestational day 17 rats (term is 22 d) are unstratified and lack a stratum corneum (SC). After incubation in hormone-free media for 3-4 d, a multilayered SC replete with mature lamellar membranes in the interstices and a functionally competent barrier appear. 9-cis or all-trans retinoic acid, 1,25 dihydroxyvitamin D3, or the PPARgamma ligands prostaglandin J2 or troglitazone did not affect the development of barrier function or epidermal morphology. In contrast, activators of the PPARalpha, oleic acid, linoleic acid, and clofibrate, accelerated epidermal development, resulting in mature lamellar membranes, a multilayered SC, and a competent barrier after 2 d of incubation. The FXR activators, all-trans farnesol and juvenile hormone III, also accelerated epidermal barrier development. Activities of beta-glucocerebrosidase and steroid sulfatase, enzymes previously linked to barrier maturation, also increased after treatment with PPARalpha and FXR activators. In contrast, isoprenoids, such as nerolidol, cis-farnesol, or geranylgeraniol, or metabolites in the cholesterol pathway, such as mevalonate, squalene, or 25-hydroxycholesterol, did not alter barrier development. Finally, additive effects were observed in explants incubated with clofibrate and farnesol together in suboptimal concentrations which alone did not affect barrier development. These data indicate a putative physiologic role for PPARalpha and FXR in epidermal barrier development.


Journal of Hepatology | 2015

Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes

Melissa A. Baxter; Sarah Withey; Sean Harrison; Charis-Patricia Segeritz; Fang Zhang; Rebecca Atkinson-Dell; Cliff Rowe; Dave T. Gerrard; Rowena Sison-Young; Roz Jenkins; Joanne Henry; Andrew Berry; Lisa Mohamet; Marie Best; Stephen W. Fenwick; Hassan Z. Malik; Neil R. Kitteringham; Christopher E. Goldring; Karen Hanley; Ludovic Vallier; Neil A. Hanley

Graphical abstract


Diabetes | 2013

Development of the human pancreas from foregut to endocrine commitment

Rachel Jennings; Andrew Berry; Rebecca Kirkwood-Wilson; Neil A. Roberts; Thomas Hearn; Rachel J. Salisbury; Jennifer Blaylock; Karen Hanley; Neil A. Hanley

Knowledge of human pancreas development underpins our interpretation and exploitation of human pluripotent stem cell (PSC) differentiation toward a β-cell fate. However, almost no information exists on the early events of human pancreatic specification in the distal foregut, bud formation, and early development. Here, we have studied the expression profiles of key lineage-specific markers to understand differentiation and morphogenetic events during human pancreas development. The notochord was adjacent to the dorsal foregut endoderm during the fourth week of development before pancreatic duodenal homeobox-1 detection. In contrast to the published data from mouse embryos, during human pancreas development, we detected only a single-phase of Neurogenin 3 (NEUROG3) expression and endocrine differentiation from approximately 8 weeks, before which Nirenberg and Kim homeobox 2.2 (NKX2.2) was not observed in the pancreatic progenitor cell population. In addition to revealing a number of disparities in timing between human and mouse development, these data, directly assembled from human tissue, allow combinations of transcription factors to define sequential stages and differentiating pancreatic cell types. The data are anticipated to provide a useful reference point for stem cell researchers looking to differentiate human PSCs in vitro toward the pancreatic β-cell so as to model human development or enable drug discovery and potential cell therapy.


Journal of Clinical Investigation | 1996

Hormonal basis for the gender difference in epidermal barrier formation in the fetal rat. Acceleration by estrogen and delay by testosterone.

Karen Hanley; U Rassner; Y Jiang; D Vansomphone; Debra Crumrine; L Komüves; Peter M. Elias; Kenneth R. Feingold; M L Williams

Previous studies have shown that ontogeny of the epidermal permeability barrier and lung occur in parallel in the fetal rat, and that pharmacologic agents, such as glucocorticoids and thyroid hormone, accelerate maturation at comparable developmental time points. Gender also influences lung maturation, i.e., males exhibit delayed development. Sex steroid hormones exert opposite effects on lung maturation, with estrogens accelerating and androgens inhibiting. In this study, we demonstrate that cutaneous barrier formation, measured as transepidermal water loss, is delayed in male fetal rats. Administration of estrogen to pregnant mothers accelerates fetal barrier development both morphologically and functionally. Competent barriers also form sooner in skin explants incubated in estrogen-supplemented media in vitro. In contrast, administration of dihydrotestosterone delays barrier formation both in vivo and in vitro. Finally, treatment of pregnant rats with the androgen antagonist flutamide eliminates the gender difference in barrier formation. These studies indicate that (a) estrogen accelerates and testosterone delays cutaneous barrier formation, (b) these hormones exert their effects directly on the skin, and (c) sex differences in rates of barrier development in vivo may be mediated by testosterone.


Journal of Biological Chemistry | 2008

Ectopic SOX9 mediates extracellular matrix deposition characteristic of organ fibrosis.

Karen Hanley; Fiona Oakley; Sarah A. Sugden; David I. Wilson; Derek A. Mann; Neil A. Hanley

Appropriate temporospatial expression of the transcription factor SOX9 is important for normal development of a wide range of organs. Here, we show that when SOX9 is expressed ectopically, target genes become expressed that are associated with disease. Histone deacetylase inhibitors in clinical trials for cancer therapy induced SOX9 expression via enhanced recruitment of nuclear factor Y (NF-Y) to CCAAT elements in the SOX9 proximal promoter. The effect of histone deacetylase inhibitors could be elicited in cells that normally lack SOX9, such as hepatocytes. In human fetal hepatocytes, this aberrant induction of SOX9 protein caused ectopic expression of COL2A1 and COMP1 that encode extracellular matrix (ECM) components normally associated with chondrogenesis. Previously, ectopic expression of this “chondrogenic” profile has been implicated in vascular calcification. More broadly, inappropriate ECM deposition is a hallmark of fibrosis. We demonstrated that induction of SOX9 expression also occurred during activation of fibrogenic cells from the adult liver when the transcription factor was responsible for expression of the major component of fibrotic ECM, type 1 collagen. These combined data identify new aspects in the regulation of SOX9 expression. They support a role for SOX9 beyond normal development as a transcriptional regulator in the pathology of fibrosis.


Trends in Molecular Medicine | 2011

Understanding the role of SOX9 in acquired diseases: lessons from development.

James Pritchett; Varinder S. Athwal; Neil A. Roberts; Neil A. Hanley; Karen Hanley

The transcription factor SOX9 is crucial for multiple aspects of development. Mutations in SOX9 cause campomelic dysplasia, a haploinsufficiency disorder concordant with the expression profile of SOX9 during embryogenesis. The mechanistic understanding of development has revealed roles for SOX9 in regulating cartilage extracellular matrix (ECM) production and cell proliferation, among others. More recently, it transpires that SOX9 becomes expressed and induces destructive ECM components in organ fibrosis and related disorders. Although commonly absent from the parent cell type, SOX9 is expressed in a wide range of cancers, where it regulates cell proliferation. These data have potential diagnostic, prognostic and therapeutic relevance, suggesting that disease mechanisms might result from re-expressing this developmental transcription factor in ectopic locations.


Stem Cells | 2006

Evaluating Human Embryonic Germ Cells: Concord and Conflict as Pluripotent Stem Cells

Lee Turnpenny; Cosma Spalluto; Rebecca M. Perrett; Marie O'shea; Karen Hanley; Iain T. Cameron; David I. Wilson; Neil A. Hanley

The realization of cell replacement therapy derived from human pluripotent stem cells requires full knowledge of the starting cell types as well as their differentiated progeny. Alongside embryonic stem cells, embryonic germ cells (EGCs) are an alternative source of pluripotent stem cell. Since 1998, four groups have described the derivation of human EGCs. This review analyzes the progress on derivation, culture, and differentiation, drawing comparison with other pluripotent stem cell populations.


Stem Cell Research | 2010

Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening

Melissa A. Baxter; Cliff Rowe; Jane Alder; Sean Harrison; Karen Hanley; B. Kevin Park; Neil R. Kitteringham; Christopher E. Goldring; Neil A. Hanley

Hepatotoxicity is an enormous and increasing problem for the pharmaceutical industry. Early detection of problems during the drug discovery pathway is advantageous to minimize costs and improve patient safety. However, current cellular models are sub-optimal. This review addresses the potential use of pluripotent stem cells in the generation of hepatic cell lineages. It begins by highlighting the scale of the problem faced by the pharmaceutical industry, the precise nature of drug-induced liver injury and where in the drug discovery pathway the need for additional cell models arises. Current research is discussed, mainly for generating hepatocyte-like cells rather than other liver cell-types. In addition, an effort is made to identify where some of the major barriers remain in translating what is currently hypothesis-driven laboratory research into meaningful platform technologies for the pharmaceutical industry.


Hepatology | 2012

Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans

James Pritchett; Emma Harvey; Varinder S. Athwal; Andrew Berry; Cliff Rowe; Fiona Oakley; Anna Moles; Derek A. Mann; Nicoletta Bobola; Andrew D. Sharrocks; Brian J. Thomson; Abed Zaitoun; William L. Irving; Indra Neil Guha; Neil A. Hanley; Karen Hanley

Osteopontin (OPN) is an important component of the extracellular matrix (ECM), which promotes liver fibrosis and has been described as a biomarker for its severity. Previously, we have demonstrated that Sex‐determining region Y‐box 9 (SOX9) is ectopically expressed during activation of hepatic stellate cells (HSC) when it is responsible for the production of type 1 collagen, which causes scar formation in liver fibrosis. Here, we demonstrate that SOX9 regulates OPN. During normal development and in the mature liver, SOX9 and OPN are coexpressed in the biliary duct. In rodent and human models of fibrosis, both proteins were increased and colocalized to fibrotic regions in vivo and in culture‐activated HSCs. SOX9 bound a conserved upstream region of the OPN gene, and abrogation of Sox9 in HSCs significantly decreased OPN production. Hedgehog (Hh) signaling has previously been shown to regulate OPN expression directly by glioblastoma (GLI) 1. Our data indicate that in models of liver fibrosis, Hh signaling more likely acts through SOX9 to modulate OPN. In contrast to Gli2 and Gli3, Gli1 is sparse in HSCs and is not increased upon activation. Furthermore, reduction of GLI2, but not GLI3, decreased the expression of both SOX9 and OPN, whereas overexpressing SOX9 or constitutively active GLI2 could rescue the antagonistic effects of cyclopamine on OPN expression. Conclusion: These data reinforce SOX9, downstream of Hh signaling, as a core factor mediating the expression of ECM components involved in liver fibrosis. Understanding the role and regulation of SOX9 during liver fibrosis will provide insight into its potential modulation as an antifibrotic therapy or as a means of identifying potential ECM targets, similar to OPN, as biomarkers of fibrosis. (HEPATOLOGY 2012;56:1108–1116)

Collaboration


Dive into the Karen Hanley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil A. Hanley

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Peter M. Elias

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Berry

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David I. Wilson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Rachel Jennings

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge