Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen I. Winey is active.

Publication


Featured researches published by Karen I. Winey.


Chemical Physics Letters | 2000

Aligned single-wall carbon nanotubes in composites by melt processing methods

Reto Haggenmueller; H.H. Gommans; Andrew G. Rinzler; John E. Fischer; Karen I. Winey

Abstract This Letter describes the production of single-wall carbon nanotube (SWNT) – polymer composites with enhanced mechanical and electrical properties and exceptional nanotube alignment. A combination of solvent casting and melt mixing was used to disperse SWNT materials in poly(methyl methacrylate) (PMMA). Composite films showed higher conductivity along the flow direction than perpendicular to it. Composite fibers were melt spun to achieve draw ratios between 20 and 3600. The elastic modulus and yield strength of SWNT–PMMA composite fibers increased with nanotube loading and draw ratio. Polarized resonant Raman spectroscopy indicates that the nanotubes in the fibers are well aligned, with mosaic distribution FWHMs as small as 4°.


ACS Nano | 2013

Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors

Rose M. Mutiso; Michelle C. Sherrott; Aaron R. Rathmell; Benjamin J. Wiley; Karen I. Winey

Metal nanowire films are among the most promising alternatives for next-generation flexible, solution-processed transparent conductors. Breakthroughs in nanowire synthesis and processing have reported low sheet resistance (Rs ≤ 100 Ω/sq) and high optical transparency (%T > 90%). Comparing the merits of the various nanowires and fabrication methods is inexact, because Rs and %T depend on a variety of independent parameters including nanowire length, nanowire diameter, areal density of the nanowires and contact resistance between nanowires. In an effort to account for these fundamental parameters of nanowire thin films, this paper integrates simulations and experimental results to build a quantitatively predictive model. First, by fitting the results from simulations of quasi-2D rod networks to experimental data from well-defined nanowire films, we obtain an effective average contact resistance, which is indicative of the nanowire chemistry and processing methods. Second, this effective contact resistance is used to simulate how the sheet resistance depends on the aspect ratio (L/D) and areal density of monodisperse rods, as well as the effect of mixtures of short and long nanowires on the sheet resistance. Third, by combining our simulations of sheet resistance and an empirical diameter-dependent expression for the optical transmittance, we produced a fully calculated plot of optical transmittance versus sheet resistance. Our predictions for silver nanowires are validated by experimental results for silver nanowire films, where nanowires of L/D > 400 are required for high performance transparent conductors. In contrast to a widely used approach that employs a single percolative figure of merit, our method integrates simulation and experimental results to enable researchers to independently explore the importance of contact resistance between nanowires, as well as nanowire area fraction and arbitrary distributions in nanowire sizes. To become competitive, metal nanowire systems require a predictive tool to accelerate their design and adoption for specific applications.


Nano Letters | 2010

Super Proton Conductive High-Purity Nafion Nanofibers

Bin Dong; Liang Gwee; David Salas-de la Cruz; Karen I. Winey; Yossef A. Elabd

In this paper, we report the high proton conductivity of a single high-purity Nafion nanofiber (1.5 S/cm), which is an order of magnitude higher than the bulk Nafion film ( approximately 0.1 S/cm). We also observe a nanosize effect, where proton conductivity increases sharply with decreasing fiber diameter. X-ray scattering provides a rationale for these findings, where an oriented ionic morphology was observed in the nanofiber in contrast to the isotropic morphology in the bulk film. This work also demonstrates the successful fabrication of high-purity Nafion nanofibers ( approximately 99.9 wt %) via electrospinning and higher humidity sensitivity for nanofibers compared to the bulk. These results should have a significant impact on fuel cells and sensors.


Journal of Applied Physics | 2004

Single wall carbon nanotube fibers extruded from super-acid suspensions: Preferred orientation, electrical, and thermal transport

Wei Zhou; Juraj Vavro; Csaba Guthy; Karen I. Winey; John E. Fischer; Lars Martin Ericson; Sivarajan Ramesh; Rajesh K. Saini; Virginia A. Davis; Carter Kittrell; Matteo Pasquali; Robert H. Hauge; Richard E. Smalley

Fibers of single wall carbon nanotubes extruded from super-acid suspensions exhibit preferred orientation along their axes. We characterize the alignment by x-ray fiber diagrams and polarized Raman scattering, using a model which allows for a completely unaligned fraction. This fraction ranges from 0.17 to 0.05±0.02 for three fibers extruded under different conditions, with corresponding Gaussian full widths at half maximum (FWHM) from 64° to 44°±2°. FWHM, aligned fraction, electrical, and thermal transport all improve with decreasing extrusion orifice diameter. Resistivity, thermoelectric power, and resonant-enhanced Raman scattering indicate that the neat fibers are strongly p doped; the lowest observed ρ is 0.25 mΩ cm at 300 K. High temperature annealing increases ρ by more than 1 order of magnitude and restores the Raman resonance associated with low-energy van Hove transitions, without affecting the nanotube alignment.


Journal of the American Chemical Society | 2010

Nanoscale Morphology in Precisely Sequenced Poly(ethylene-co-acrylic acid) Zinc Ionomers

Michelle E. Seitz; Christopher D. Chan; Kathleen L. Opper; Travis W. Baughman; Kenneth B. Wagener; Karen I. Winey

The morphology of a series of linear poly(ethylene-co-acrylic acid) zinc-neutralized ionomers with either precisely or randomly spaced acid groups was investigated using X-ray scattering, differential scanning calorimetry (DSC), and scanning transmission electron microscopy (STEM). Scattering from semicrystalline, precise ionomers has contributions from acid layers associated with the crystallites and ionic aggregates dispersed in the amorphous phase. The precisely controlled acid spacing in these ionomers reduces the polydispersity in the aggregate correlation length and yields more intense, well-defined scattering peaks. Remarkably, the ionic aggregates in an amorphous, precise ionomer with 22 mol % acid and 66% neutralization adopt a cubic lattice; this is the first report of ionic aggregate self-assembly onto a lattice in an ionomer with an all-carbon backbone. Aggregate size is insensitive to acid content or neutralization level. As the acid content increases from 9.5 to 22 mol % at approximately 75% neutralization, the number density of aggregates increases by approximately 5 times, suggesting that the ionic aggregates become less ionic with increasing acid content.


Journal of Microencapsulation | 2005

Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol

Avinash Budhian; Steven J. Siegel; Karen I. Winey

This study developed an emulsion-solvent evaporation method for producing haloperidol-loaded PLGA nanoparticles with up to 2% (wt/wt. of polymer) drug content, in vitro release duration of over 13 days and less than 20% burst release. The free haloperidol is removed from the nanoparticle suspension using a novel solid phase extraction technique. This leads to a more accurate determination of drug incorporation efficiency than the typical washing methods. It was discovered that PLGA end groups have a strong influence on haloperidol incorporation efficiency and its release from PLGA nanoparticles. The hydroxyl-terminated PLGA (uncapped) nanoparticles have a drug incorporation efficiency of more than 30% as compared to only 10% with methyl-terminated PLGA (capped) nanoparticles. The in vitro release profile of nanoparticles with uncapped PLGA has a longer release period and a lower initial burst as compared to capped PLGA. By varying other processing and materials parameters, the size, haloperidol incorporation and haloperidol release of the haloperidol-loaded PLGA nanoparticles were controlled.


Journal of Biomechanics | 1997

A high-frequency shear device for testing soft biological tissues

Kristy B. Arbogast; Kirk L. Thibault; B. Scott Pinheiro; Karen I. Winey; Susan S. Margulies

Accurate mechanical property data obtained at large shear deformations and high frequencies are a fundamental component of realistic numerical simulations of soft tissue injury. Although many commercial systems exist for testing shear properties of viscoelastic materials with properties similar to soft biological tissue, none are capable of determining properties at high loading rates necessary for modeling soft tissue injury. Previous custom shear testing systems, though capable of high-frequency loading, indirectly measure tissue properties by using analytical corrections for inertial effects. To address these limitations, a new custom designed oscillatory shear testing apparatus (STA) capable of testing soft biological tissues in simple shear has been constructed and validated. Through a proper selection of sample thickness, direct measurement of material properties at high frequencies is achieved mechanically without analytical inertial adjustments. The complex shear modulus of three mixtures of silicone gel with viscoelastic properties in a range similar to soft biological tissue was characterized in the STA over a dynamic frequency range of 20-200 Hz and validated with a commercially available solids rheometer. The frequency-dependent complex shear modulus measurements of the STA were within 10% of the rheometer measurements for all mixtures over the entire frequency range tested. The STA represents substantive improvement over current shear testing methods by providing direct measurement of the shear behavior of soft viscoelastic material at high frequencies. Mechanical property data gained from this device will provide a more realistic basis for numerical simulations of biological structures.


Journal of Polymer Science Part B | 1996

Melt intercalation of polystyrene in layered silicates

Mohan Sikka; Laura N. Cerini; Surya S. Ghosh; Karen I. Winey

We have studied the melt intercalation of polystyrene into organically modified sodium bentonite, a layered, mica-type silicate, using a variety of techniques. Wide-angle X-ray scattering experiments on polymer/silicate hybrid samples demonstrate that intercalation of polymer chains leads to an ∼25% increase in the spacing between silicate layers. The magnitude of this increase, compared with the radius of gyration of the melt polymer, implies a flattened conformation of chains in the galleries. Low voltage scanning electron microscopy reveals voids in the intercalated hybrid matrix that correspond to regions where pristine polymer was present in the physical mixture of polymer and silicate before intercalation. Differential scanning calorimetry shows that only unintercalated polymer contributes to the measured glass transition trace, so that the magnitude of the trace is diminished upon intercalation.


Journal of Heat Transfer-transactions of The Asme | 2007

Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites

Csaba Guthy; Fangming Du; Stijn Brand; Karen I. Winey; John E. Fischer

Single-walled carbon nanotubes (SWNTs) are considered as promising filler materials for improving the thermal conductivity of conventional polymers. We carefully investigated the thermal conductivity of SWNT poly(methylmethacrylate) (PMMA) nanocomposites with random SWNT orientations and loading up to 9 vol % using the comparative technique. The composites were prepared by coagulation and exhibit ∼250% improvement in the thermal conductivity at 9 vol %. The experimental results were analyzed using the versatile Nielsen model, which accounts for many important factors, including filler aspect ratio and maximum packing fraction. In this work, the aspect ratio was determined by atomic force microscopy (AFM) and used as an input parameter in the Nielsen model. We obtained good agreement between our results and the predictions of the Nielsen model, which indicates that higher aspect ratio fillers are needed to achieve further enhancement. Our analysis also suggests that improved thermal contact between the SWNT network and the matrix material would be beneficial.


Nanotechnology | 2009

An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer.

Minfang Mu; Sebastian Osswald; Yury Gogotsi; Karen I. Winey

The transfer mechanism of applied stress in single-wall carbon nanotube (SWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites was investigated using in situ Raman spectroscopy on composite fibers. These SWCNT/PMMA nanocomposite fibers have no specific SWCNT-polymer interactions and the high degree of nanotube alignment minimizes the contributions from nanotube-nanotube interactions. Although tensile testing found significantly improved overall mechanical properties of the fibers, effective stress transfer to SWCNTs is limited to a small strain regime (epsilon<0.2%). At higher strains, the stress on the SWCNTs decreases due to the slippage at the nanotube-polymer interface. Slippage was also evident in scanning electron micrographs of fracture surfaces produced by tensile testing of the composite fibers. Above epsilon = 0.2%, the strain-induced slippage was accompanied by irreversible responses in stress and Raman peak shifts. This paper shows that efficient stress transfer to nanotubes as monitored by Raman spectroscopy is crucial to improving the mechanical properties of polymer nanocomposites and to detecting internal damage in nanocomposites.

Collaboration


Dive into the Karen I. Winey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Fischer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fangming Du

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ralph H. Colby

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

James Runt

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae-Hong Choi

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge