Karen J. Liu
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen J. Liu.
Science | 2012
Christian Schulz; Elisa Gomez Perdiguero; Laurent Chorro; Heather L. Szabo-Rogers; Nicolas Cagnard; Katrin Kierdorf; Marco Prinz; Bishan Wu; Sten Eirik W. Jacobsen; Jeffrey W. Pollard; Jon Frampton; Karen J. Liu; Frederic Geissmann
Macrophage Development Rewritten Macrophages provide protection against a wide variety of infections and critically shape the inflammatory environment in many tissues. These cells come in many flavors, as determined by differences in gene expression, cell surface phenotype and specific function. Schulz et al. (p. 86, published online 22 March) investigated whether adult macrophages all share a common developmental origin. Immune cells, including most macrophages, are widely thought to arise from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development. Analysis of Myb-deficient mice revealed that a population of yolk-sac–derived, tissue-resident macrophages was able to develop and persist in adult mice in the absence of HSCs. Importantly, yolk sac–derived macrophages also contributed substantially to the tissue macrophage pool even when HSCs were present. In mice, a population of tissue-resident macrophages arises independently of bone marrow–derived stem cells. Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11bhigh monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80bright macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia—cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Perrine Barraud; Anastasia A. Seferiadis; Luke D. Tyson; Maarten Zwart; Heather L. Szabo-Rogers; Christiana Ruhrberg; Karen J. Liu; Clare V. H. Baker
Olfactory ensheathing cells (OECs) are a unique class of glial cells with exceptional translational potential because of their ability to support axon regeneration in the central nervous system. Although OECs are similar in many ways to immature and nonmyelinating Schwann cells, and can myelinate large-diameter axons indistinguishably from myelination by Schwann cells, current dogma holds that OECs arise from the olfactory epithelium. Here, using fate-mapping techniques in chicken embryos and genetic lineage tracing in mice, we show that OECs in fact originate from the neural crest and hence share a common developmental heritage with Schwann cells. This explains the similarities between OECs and Schwann cells and overturns the existing dogma on the developmental origin of OECs. Because neural crest stem cells persist in adult tissue, including skin and hair follicles, our results also raise the possibility that patient-derived neural crest stem cells could in the future provide an abundant and accessible source of autologous OECs for cell transplantation therapy for the injured central nervous system.
Nature | 2007
Karen J. Liu; Joseph R. Arron; Kryn Stankunas; Gerald R. Crabtree; Michael T. Longaker
Glycogen synthase kinase-3β (GSK-3β) has integral roles in a variety of biological processes, including development, diabetes, and the progression of Alzheimer’s disease. As such, a thorough understanding of GSK-3β function will have a broad impact on human biology and therapeutics. Because GSK-3β interacts with many different pathways, its specific developmental roles remain unclear. We have discovered a genetic requirement for GSK-3β in midline development. Homozygous null mice display cleft palate, incomplete fusion of the ribs at the midline and bifid sternum as well as delayed sternal ossification. Using a chemically regulated allele of GSK-3β (ref. 6), we have defined requirements for GSK-3β activity during discrete temporal windows in palatogenesis and skeletogenesis. The rapamycin-dependent allele of GSK-3β produces GSK-3β fused to a tag, FRB* (FKBP/rapamycin binding), resulting in a rapidly destabilized chimaeric protein. In the absence of drug, GSK-3βFRB*/FRB* mutants appear phenotypically identical to GSK-3β-/- mutants. In the presence of drug, GSK-3βFRB* is rapidly stabilized, restoring protein levels and activity. Using this system, mutant phenotypes were rescued by restoring endogenous GSK-3β activity during two distinct periods in gestation. This technology provides a powerful tool for defining windows of protein function during development.
Developmental Biology | 2010
Heather L. Szabo-Rogers; Lucy E. Smithers; Wardati Yakob; Karen J. Liu
The vertebrate head is an extremely complicated structure: development of the head requires tissue-tissue interactions between derivates of all the germ layers and coordinated morphogenetic movements in three dimensions. In this review, we highlight a number of recent embryological studies, using chicken, frog, zebrafish and mouse, which have identified crucial signaling centers in the embryonic face. These studies demonstrate how small variations in growth factor signaling can lead to a diversity of phenotypic outcomes. We also discuss novel genetic studies, in human, mouse and zebrafish, which describe cell biological mechanisms fundamental to the growth and morphogenesis of the craniofacial skeleton. Together, these findings underscore the complex interactions leading to species-specific morphology. These and future studies will improve our understanding of the genetic and environmental influences underlying human craniofacial anomalies.
Development | 2010
Yaniv M. Elkouby; Sarah Elias; Elena S. Casey; Shelby A. Blythe; Nir Tsabar; Peter S. Klein; Heather Root; Karen J. Liu; Dale Frank
In vertebrates, canonical Wnt signaling controls posterior neural cell lineage specification. Although Wnt signaling to the neural plate is sufficient for posterior identity, the source and timing of this activity remain uncertain. Furthermore, crucial molecular targets of this activity have not been defined. Here, we identify the endogenous Wnt activity and its role in controlling an essential downstream transcription factor, Meis3. Wnt3a is expressed in a specialized mesodermal domain, the paraxial dorsolateral mesoderm, which signals to overlying neuroectoderm. Loss of zygotic Wnt3a in this region does not alter mesoderm cell fates, but blocks Meis3 expression in the neuroectoderm, triggering the loss of posterior neural fates. Ectopic Meis3 protein expression is sufficient to rescue this phenotype. Moreover, Wnt3a induction of the posterior nervous system requires functional Meis3 in the neural plate. Using ChIP and promoter analysis, we show that Meis3 is a direct target of Wnt/β-catenin signaling. This suggests a new model for neural anteroposterior patterning, in which Wnt3a from the paraxial mesoderm induces posterior cell fates via direct activation of a crucial transcription factor in the overlying neural plate.
Developmental Cell | 2013
Jacqueline M. Tabler; William B. Barrell; Heather L. Szabo-Rogers; Chris Healy; Yvonne Yeung; Elisa Gomez Perdiguero; Christian Schulz; Basil Z. Yannakoudakis; Aida Mesbahi; Bogdan J. Wlodarczyk; Frederic Geissmann; Richard H. Finnell; John B. Wallingford; Karen J. Liu
Summary Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.
Pediatric Research | 2008
Nicholas J. Panetta; Deepak M. Gupta; Bethany J. Slater; Matthew D. Kwan; Karen J. Liu; Michael T. Longaker
Contributions from multidisciplinary investigations have focused attention on the potential of tissue engineering to yield novel therapeutics. Congenital malformations, including cleft palate, craniosynostosis, and craniofacial skeletal hypoplasias represent excellent targets for the implementation of tissue engineering applications secondary to the technically challenging nature and inherent inadequacies of current reconstructive interventions. Apropos to the search for answers to these clinical conundrums, studies have focused on elucidating the molecular signals driving the biologic activity of the aforementioned maladies. These investigations have highlighted multiple signaling pathways, including Wnt, fibroblast growth factor, transforming growth factor-β, and bone morphogenetic proteins, that have been found to play critical roles in guided tissue development. Furthermore, a comprehensive knowledge of these pathways will be of utmost importance to the optimization of future cell-based tissue engineering strategies. The scope of this review encompasses a discussion of the molecular biology involved in the development of cleft palate and craniosynostosis. In addition, we include a discussion of craniofacial distraction osteogenesis and how its applied forces influence cell signaling to guide endogenous bone regeneration. Finally, this review discusses the future role of cell-based tissue engineering in the treatment of congenital malformations.
Nature Genetics | 2016
Michinori Toriyama; Chanjae Lee; S. Paige Taylor; Ivan Duran; Daniel H. Cohn; Ange-Line Bruel; Jacqueline M. Tabler; Kevin Drew; Marcus R. Kelly; Sukyoung Kim; Tae Joo Park; Daniela A. Braun; Geneviève Pierquin; Armand Biver; Kerstin Wagner; Anne Malfroot; Inusha Panigrahi; Brunella Franco; Hadeel Adel Al-Lami; Yvonne Yeung; Yeon Ja Choi; Yannis Duffourd; Laurence Faivre; Jean-Baptiste Rivière; Jiang Chen; Karen J. Liu; Edward M. Marcotte; Friedhelm Hildebrandt; Christel Thauvin-Robinet; Deborah Krakow
Cilia use microtubule-based intraflagellar transport (IFT) to organize intercellular signaling. Ciliopathies are a spectrum of human diseases resulting from defects in cilia structure or function. The mechanisms regulating the assembly of ciliary multiprotein complexes and the transport of these complexes to the base of cilia remain largely unknown. Combining proteomics, in vivo imaging and genetic analysis of proteins linked to planar cell polarity (Inturned, Fuzzy and Wdpcp), we identified and characterized a new genetic module, which we term CPLANE (ciliogenesis and planar polarity effector), and an extensive associated protein network. CPLANE proteins physically and functionally interact with the poorly understood ciliopathy-associated protein Jbts17 at basal bodies, where they act to recruit a specific subset of IFT-A proteins. In the absence of CPLANE, defective IFT-A particles enter the axoneme and IFT-B trafficking is severely perturbed. Accordingly, mutation of CPLANE genes elicits specific ciliopathy phenotypes in mouse models and is associated with ciliopathies in human patients.
Development | 2013
Sabine Freter; Stephen J. Fleenor; Rasmus Freter; Karen J. Liu; Jo Begbie
The majority of cranial sensory neurons originate in placodes in the surface ectoderm, migrating to form ganglia that connect to the central nervous system (CNS). Interactions between inward-migrating sensory neuroblasts and emigrant cranial neural crest cells (NCCs) play a role in coordinating this process, but how the relationship between these two cell populations is established is not clear. Here, we demonstrate that NCCs generate corridors delineating the path of migratory neuroblasts between the placode and CNS in both chick and mouse. In vitro analysis shows that NCCs are not essential for neuroblast migration, yet act as a superior substrate to mesoderm, suggesting provision of a corridor through a less-permissive mesodermal territory. Early organisation of NCC corridors occurs prior to sensory neurogenesis and can be recapitulated in vitro; however, NCC extension to the placode requires placodal neurogenesis, demonstrating reciprocal interactions. Together, our data indicate that NCC corridors impose physical organisation for precise ganglion formation and connection to the CNS, providing a local environment to enclose migrating neuroblasts and axonal processes as they migrate through a non-neural territory.
Genesis | 2012
Grant N. Wheeler; Karen J. Liu
Chemical genetics, or chemical biology, has become an increasingly powerful method for studying biological processes. The main objective of chemical genetics is the identification and use of small molecules that act directly on proteins, allowing rapid and reversible control of activity. These compounds are extremely powerful tools for researchers, particularly in biological systems that are not amenable to genetic methods. In addition, identification of small molecule interactions is an important step in the drug discovery process. Increasingly, the African frog Xenopus is being used for chemical genetic approaches. Here, we highlight the advantages of Xenopus as a first‐line in vivo model for chemical screening as well as for testing reverse engineering approaches. genesis 50:207–218, 2012.