Karen J. Miller
University of Tasmania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen J. Miller.
Coral Reefs | 2013
Sebastian Schmidt-Roach; Petra Lundgren; Karen J. Miller; Gabriele Gerlach; A. M. E. Noreen; Nikos Andreakis
The incredible range of morphological plasticity present in scleractinian corals has confused the taxonomy of the group, prompting the introduction of “ecomorphs” to explain the observed correlation between local environmental conditions and phenotypic variation. Pocilloporadamicornis (Linnaeus, 1758) represents one of the best known examples of eco-phenotypic variation in scleractinian corals with a variety of forms and reproductive strategies reported across its global distribution range. Here, we reconstruct genealogical relationships of P. damicornis colonies collected from thirteen locations along the East Australian coast to examine the relationship between genetic and phenotypic diversity in this species. Haplotype networks computed from two mitochondrial DNA regions (CR, ORF) indicate that the range of morphotypes observed within this taxon fall into at least five genetically distinct mitochondrial lineages. Nuclear (HSP70, ITS2) haplowebs on the other hand recover sharp genetic discontinuities among three of the morphological groups. We conclude that P. damicornis from Eastern Australia constitutes a cryptic species complex. The misinterpretation of taxonomical units within P. damicornis may well explain its perceived variation in the ecology, biology and life history across its range.
Journal of Animal Ecology | 2008
Karen J. Miller; David J. Ayre
1. For a wide range of organisms, heritable variation in life-history characteristics has been shown to be strongly subject to selection, reflecting the impact that variation in characters such as genotypic diversity, duration of larval development and adaptations for dispersal can have on the fitness of offspring and the make-up of populations. Indeed, variation in life-history characteristics, especially reproduction and larval type, have often been used to predict patterns of dispersal and resultant population structures in marine invertebrates. 2. Scleractinian corals are excellent models with which to test this relationship, as they exhibit almost every possible combination of reproductive mode and larval type. Some general patterns are emerging but, contrary to expectations, genetic data suggest that while populations of broadcast spawning species may be genotypically diverse they may be heavily reliant on localized recruitment rather than widespread dispersal of larvae. 3. Here we use microsatellites to test the importance of localized recruitment by comparing the genetic structure of populations of two broadcast spawning corals with contrasting modes of reproduction and larval development; Goniastrea favulus is self-compatible, has sticky, negatively buoyant eggs and larvae and is expected to have restricted dispersal of gametes and larvae. In contrast, Platygyra daedalea is self-incompatibile, spawns positively buoyant egg-sperm bundles and has planktonic development. 4. Surprisingly, spatial-autocorrelation revealed no fine-scale clustering of similar genotypes within sites for G. favulus, but showed a non-random distribution of genotypes in P. daedalea. Both species showed similar levels of genetic subdivision among sites separated by 50-100 m (F(ST) = 0.03), suggesting that larval dispersal may be equivalent in both species. 5. Interestingly, as fragmentation has been considered rare in massive corals, our sample of 284 P. daedalea colonies included 28 replicated genotypes that were each unlikely (P < 0.05) to have been derived independently from sexual reproduction. 6. We conclude that the extreme life history of G. favulus does not produce unusually fine-scale genetic structure and subsequently, that reproductive mode and larval type may not be not good predictors of population structure or dispersal ability.
Molecular Ecology | 2011
Helena P. Baird; Karen J. Miller; Jonathan S. Stark
Recent molecular research on Antarctic benthic organisms has challenged traditional taxonomic classifications, suggesting that our current perceptions of Antarctic biodiversity and species distributions must be thoroughly revised. Furthermore, genetic differentiation at the intraspecific level remains poorly understood, particularly in eastern Antarctica. We addressed these issues using DNA sequence data for two sibling amphipod species that could be collected on a circum‐Antarctic scale: Eusirus perdentatus and Eusirus giganteus. Haplotype networks and Bayesian phylogenies based on mitochondrial (COI, CytB) and nuclear (ITS2) DNA provided strong evidence of multiple cryptic species of Eusirus, with several occurring in sympatry and at least one likely to have a true circum‐Antarctic distribution. Within species, gene flow was often highly restricted, consistent with a brooding life history and in some cases suggestive of current or future allopatric speciation. Patterns of genetic structure were not always predictable: one cryptic species showed preliminary evidence of high genetic differentiation across ∼150 km in eastern Antarctica (FST > 0.47, P < 0.01), yet another was remarkably homogenous across ∼5000 km (FST = 0.00, P = 1.00). Genetic diversity also varied among cryptic species, independent of sample size (π = 0.00–0.99). These results indicate several hidden levels of genetic complexity in these Antarctic amphipods that are neither apparent from previous taxonomic or ecological studies nor predictable from their life history. Such genetic diversity and structure may reflect different modes of survival for Antarctic benthic organisms during historic glacial cycles, and/or subsequent re‐establishment of populations on the shelf, and highlight our misunderstanding of Antarctic marine species diversity.
Conservation Biology | 2008
Karen J. Miller; David J. Ayre
High-latitude coral reefs (HLRs) are potentially vulnerable marine ecosystems facing well-documented threats to tropical reefs and exposure to suboptimal temperatures and insolation. In addition, because of their geographic isolation, HLRs may have poor or erratic larval connections to tropical reefs and a reduced genetic diversity and capacity to respond to environmental change. On Australias east coast, a system of marine protected areas (MPAs) has been established with the aim of conserving HLRs in part by providing sources of colonizing larvae. To examine the effectiveness of existing MPAs as networks for dispersal, we compared genetic diversity within and among the HLRs in MPAs and between these HLRs and tropical reefs on the southern Great Barrier Reef (GBR). The 2 coral species best represented on Australian HLRs (the brooding Pocillopora damicornis and the broadcast-spawning Goniastrea australensis) exhibited sharply contrasting patterns of diversity and connectedness. For P. damicornis, the 8-locus genetic and genotypic diversity declined dramatically with increasing latitude (N(a)= 3.6-1.2, H(e)= 0.3-0.03, N(g):N = 0.87-0.06), although population structure was consistent with recruitment derived largely from sexual reproduction (G(o):G(e)= 1.28-0.55). Genetic differentiation was high among the HLRs (F(ST)[SD]= 0.32 [0.08], p < 0.05) and between the GBR and the HLRs (F(ST)= 0.24 [0.06], p < 0.05), which indicates these temperate populations are effectively closed. In contrast for G. australensis, 9-locus genetic diversity was more consistent across reefs (N(a)= 4.2-3.9, H(e)= 0.3-0.26, N(g):N = 1-0.61), and there was no differentiation among regions (F(ST)= 0.00 [0.004], p > 0.05), which implies the HLRs and the southern GBR are strongly interconnected. Our results demonstrate that although the current MPAs appear to capture most of the genetic diversity present within the HLR systems for these 2 species, their sharply contrasting patterns of connectivity indicate some taxa, such as P. damicornis, will be more vulnerable than others, and this disparity will provide challenges for future management.
Coral Reefs | 2006
Craig D. H. Sherman; David J. Ayre; Karen J. Miller
We have investigated the relationship between genotypic diversity, the mode of production of brooded larvae and disturbance in a range of reef habitats, in order to resolve the disparity between the reproductive mode and population structure reported for the brooding coral Pocillopora damicornis. Within 14 sites across six habitats, the ratio of the observed (Go) to the expected (Ge) genotypic diversity ranged from 69 to 100% of that expected for random mating. At three other sites in two habitats the Go/Ge ranged from 35 to 53%. Two of these sites were recently bleached, suggesting that asexual recruitment may be favoured after disturbance. Nevertheless, our data suggest that brooded larvae, from each of five habitats surveyed, were asexually produced. While clonal recruitment may be important in disturbed habitats, the lack of clonality detected, both in this and earlier surveys of 40 other sites, implies that a disturbance is normally insufficient to explain this species’ continued investment in clonal reproduction.
Heredity | 2011
Shelly Lachish; Karen J. Miller; Andrew Storfer; Anne W. Goldizen; Menna E. Jones
Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (FIS pre/post-disease −0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2–3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (θ=0.005, 95% confidence interval (CI) −0.003 to 0.017), we found significant genetic differentiation among populations post-disease (θ=0.020, 0.010–0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations.
Molecular Ecology | 2009
Karen J. Miller; B. T. Maynard; Cn Mundy
Overexploitation of marine species invariably results in population decline but can also have indirect effects on ecological processes such as larval dispersal and recruitment that ultimately affect genetic diversity and population resilience. We compared microsatellite DNA variation among depleted and healthy populations of the black‐lip abalone Haliotis rubra from Tasmania, Australia, to determine if over‐fishing had affected genetic diversity. We also used genetic data to assess whether variation in the scale and frequency of larval dispersal was linked to greater population decline in some regions than in others, and if larval dispersal was sufficient to facilitate natural recovery of depleted populations. Surprisingly, allelic diversity was higher in depleted populations than in healthy populations (P < 0.05). Significant subdivision across hundreds of metres among our sampling sites (FST = 0.026, P < 0.01), coupled with assignment tests, indicated that larval dispersal is restricted in all regions studied, and that abalone populations across Tasmania are largely self‐recruiting. Low levels of larval exchange appear to occur at the meso‐scale (7–20 km), but age estimates based on shell size indicated that successful migration of larvae between any two sites may happen only once every few years. We suggest that genetic diversity may be higher in depleted populations due to the higher relative ratio of migrant to self‐recruiting larvae. In addition, we expect that recovery of depleted abalone populations will be reliant on sources of larvae at the meso‐scale (tens of km), but that natural recovery is only likely to occur on a timescale unacceptable to fishers and resource managers.
Molecular Ecology Resources | 2012
Malvina Andris; Gudbjorg I. Aradottir; G. Arnau; Asta Audzijonyte; Emilie C. Bess; Francesco Bonadonna; G. Bourdel; Joël Bried; Gregory J. Bugbee; Pamela A. Burger; H. Chair; P. Charruau; A. Y. Ciampi; L. Costet; Paul J. DeBarro; H. Delatte; Marie-Pierre Dubois; Mark D. B. Eldridge; Phillip R. England; D. Enkhbileg; B. Fartek; Michael G. Gardner; Karen-Ann Gray; Rasanthi M. Gunasekera; Steven J. Hanley; Nathan Havil; James P. Hereward; Shotaro Hirase; Yan Hong; Philippe Jarne
This article documents the addition of 205 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Bagassa guianensis, Bulweria bulwerii, Camelus bactrianus, Chaenogobius annularis, Creontiades dilutus, Diachasmimorpha tryoni, Dioscorea alata, Euhrychiopsis lecontei, Gmelina arborea, Haliotis discus hannai, Hirtella physophora, Melanaphis sacchari, Munida isos, Thaumastocoris peregrinus and Tuberolachnus salignus. These loci were cross‐tested on the following species: Halobaena caerulea, Procellaria aequinoctialis, Oceanodroma monteiroi, Camelus ferus, Creontiades pacificus, Dioscorea rotundata, Dioscorea praehensilis, Dioscorea abyssinica, Dioscorea nummularia, Dioscorea transversa, Dioscorea esculenta, Dioscorea pentaphylla, Dioscorea trifida, Hirtella bicornis, Hirtella glandulosa, Licania alba, Licania canescens, Licania membranaceae, Couepia guianensis and 7 undescribed Thaumastocoris species.
PLOS ONE | 2012
Sebastian Schmidt-Roach; Karen J. Miller; Erika Woolsey; Gabriele Gerlach; Andrew Baird
The coral genus Pocillopora is one of the few to include some species that broadcast spawn gametes and some species that brood larvae, although reports of reproductive mode and timing vary within and among species across their range. Notably, the ubiquitous Pocillopora damicornis has been described as both a brooder and spawner, although evidence of broadcast spawning is rare. Here, we report observations of broadcast-spawning in four species of Pocillopora on the Great Barrier Reef (GBR), including P. damicornis. All species spawned predictably during the early morning, two days following the full moon, and spawning was observed in multiple months over the summer period (November to February). Eggs and sperm were free-spawned concurrently. Eggs were negatively buoyant and contained Symbiodinium. This newfound knowledge on the mode, timing and regularity of broadcast spawning in Pocillopora spp. on the GBR brings us one step closer to elucidating the complex reproductive ecology of these species.
PLOS ONE | 2011
Karen J. Miller; Ashley A. Rowden; Alan Williams; Vreni Häussermann
Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.