Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Kozarsky is active.

Publication


Featured researches published by Karen Kozarsky.


Nature Medicine | 1995

A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia

Mariann Grossman; Daniel J. Rader; David W.M. Muller; Daniel M. Kolansky; Karen Kozarsky; Bernard J. Clark; Evan A. Stein; Paul J. Lupien; H. Bryan Brewer; Steven E. Raper; James M. Wilson

The outcome of the first pilot study of liver-directed gene therapy is reported here. Five patients with homozygous familial hypercholesterolaemia (FH) ranging in age from 7 to 41 years were enrolled; each patient tolerated the procedure well without significant complications. Transgene expression was detected in a limited number of hepatocytes of liver tissue harvested four months after gene transfer from all five patients. Significant and prolonged reductions in low density lipoprotein (LDL) cholesterol were demonstrated in three of five patients; in vivo LDL catabolism was increased 53% following gene therapy in a receptor negative patient, who realized a reduction in serum LDL equal to ∼150 mg dl−1. This study demonstrates the feasibility of engrafting limited numbers of retrovirus-transduced hepatocytes without morbidity and achieving persistent gene expression lasting at least four months after gene therapy. The variable metabolic responses observed following low-level genetic reconstitution in the five patients studied precludes a broader application of liver-directed gene therapy without modifications that consistently effect substantially greater gene transfer.


Current Opinion in Genetics & Development | 1993

Gene therapy: adenovirus vectors

Karen Kozarsky; James M. Wilson

The past year has seen a proliferation in the use of recombinant, replication-defective adenoviruses for experimental models of gene therapy. The fact that adenovirus infects most cell types with no requirement for cell division, combined with the high titers and high efficiency of gene transfer obtainable with recombinant adenovirus, make it a promising system for in vivo human gene therapy.


Nature Genetics | 1993

Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses.

John F. Engelhardt; Yiping Yang; Leslie D. Stratford-Perricaudet; Edward D. Allen; Karen Kozarsky; Michel Perricaudet; James R. Yankaskas; James M. Wilson

We describe the use of a human bronchial xenograft model for studying the efficiency and biology of in vivo gene transfer into human bronchial epithelia with recombinant E1 deleted adenoviruses. All cell types in the surface epithelium except basal cells efficiently expressed the adenoviral transduced recombinant genes, lacZ and CFTR, for 3–5 weeks. Stable transgene expression was associated with high level expression of the early adenoviral gene, E2a, in a subset of transgene expressing cells and virtually undetectable expression of the late adenoviral genes encoding the structural proteins, hexon and fiber. These studies begin to address important issues that relate to safety and in vivo efficacy of recombinant adenoviruses for gene delivery into the human airway.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Gene Transfer and Hepatic Overexpression of the HDL Receptor SR-BI Reduces Atherosclerosis in the Cholesterol-Fed LDL Receptor–Deficient Mouse

Karen Kozarsky; Mary H. Donahee; Jane M. Glick; Monty Krieger; Daniel J. Rader

HDL cholesterol levels in humans are inversely correlated with the risk of atherosclerosis. The class B scavenger receptor type I (SR-BI) is the first molecularly well-defined HDL receptor, and hepatic overexpression of SR-BI in normal mice has been shown to result in decreased plasma HDL cholesterol levels. To determine whether SR-BI overexpression is proatherogenic or is protective against atherosclerosis, LDL receptor-deficient mice were placed on a high-fat/high-cholesterol diet for 2 or 12 weeks to induce atherosclerotic lesions of different stages and then were injected with a recombinant adenovirus encoding murine SR-BI. Transient hepatic overexpression of SR-BI in mice with both early and advanced lesions significantly decreased atherosclerosis. SR-BI expression was associated with markedly decreased HDL cholesterol and either unchanged or only modestly reduced non-HDL cholesterol levels; in all experiments, the mean HDL cholesterol levels were significantly correlated with atherosclerotic lesion size. These data suggest that interventions that promote HDL cholesterol transport and lower plasma HDL cholesterol levels can suppress atherosclerosis, even when initiated after significant lesion development. Thus, stimulation of hepatic SR-BI activity may provide a novel target for therapeutic intervention in atherosclerotic cardiovascular disease.


Journal of Biological Chemistry | 1995

The very low density lipoprotein receptor mediates the cellular catabolism of lipoprotein lipase and urokinase-plasminogen activator inhibitor type I complexes.

Kelley M. Argraves; Frances D. Battey; Colin D. MacCalman; Keith R. McCrae; Mats Gåfvels; Karen Kozarsky; David A. Chappell; Jerome F. Strauss; Dudley K. Strickland

The very low density lipoprotein (VLDL) receptor binds apolipoprotein E-rich lipoproteins as well as the 39-kDa receptor-associated protein (RAP). Ligand blotting experiments using RAP and immunoblotting experiments using an anti-VLDL receptor IgG detected the VLDL receptor in detergent extracts of human aortic endothelial cells, human umbilical vein endothelial cells, and human aortic smooth muscle cells. To gain insight into the role of the VLDL receptor in the vascular endothelium, its ligand binding properties were further characterized. In vitro binding experiments documented that lipoprotein lipase (LpL), a key enzyme in lipoprotein catabolism, binds with high affinity to purified VLDL receptor. In addition, urokinase complexed with plasminogen activator-inhibitor type I (uPA•PAI-1) also bound to the purified VLDL receptor with high affinity. To assess the capacity of the VLDL receptor to mediate the cellular internalization of ligands, an adenoviral vector was used to introduce the VLDL receptor gene into a murine embryonic fibroblast cell line deficient in the VLDL receptor and the LDL receptor-related protein, another endocytic receptor known to bind LpL and uPA•PAI-1 complexes. Infected fibroblasts that express the VLDL receptor mediate the cellular internalization of 125I-labeled LpL and uPA•PAI-1 complexes, leading to their degradation. Non-infected fibroblasts or fibroblasts infected with the lacZ gene did not internalize these ligands. These studies confirm that the VLDL receptor binds to and mediates the catabolism of LpL and uPA•PAI-1 complexes. Thus, the VLDL receptor may play a unique role on the vascular endothelium in lipoprotein catabolism by regulating levels of LpL and in the regulation of fibrinolysis by facilitating the removal of urokinase complexed with its inhibitor.


Journal of Clinical Investigation | 1997

The atherogenic lipoprotein Lp(a) is internalized and degraded in a process mediated by the VLDL receptor.

Kelley M. Argraves; Karen Kozarsky; John T. Fallon; Peter C. Harpel; Dudley K. Strickland

Lp(a) is a major inherited risk factor associated with premature heart disease and stroke. The mechanism of Lp(a) atherogenicity has not been elucidated, but likely involves both its ability to influence plasminogen activation as well as its atherogenic potential as a lipoprotein particle after receptor-mediated uptake. We demonstrate that fibroblasts expressing the human VLDL receptor can mediate endocytosis of Lp(a), leading to its degradation within lysosomes. In contrast, fibroblasts deficient in this receptor are not effective in catabolizing Lp(a). Lp(a) degradation was prevented by antibodies against the VLDL receptor, and by RAP, an antagonist of ligand binding to the VLDL receptor. Catabolism of Lp(a) was inhibited by apolipoprotein(a), but not by LDL or by monoclonal antibodies against apoB100 that block LDL binding to the LDL receptor, indicating that apolipoprotein(a) mediates Lp(a) binding to this receptor. Removal of Lp(a) antigen from the mouse circulation was delayed in mice deficient in the VLDL receptor when compared with control mice, indicating that the VLDL receptor may play an important role in Lp(a) catabolism in vivo. We also demonstrate the expression of the VLDL receptor in macrophages present in human atherosclerotic lesions. The ability of the VLDL receptor to mediate endocytosis of Lp(a) could lead to cellular accumulation of lipid within macrophages, and may represent a molecular basis for the atherogenic effects of Lp(a).


Somatic Cell and Molecular Genetics | 1993

Adenovirus-mediated correction of the genetic defect in hepatocytes from patients with familial hypercholesterolemia

Karen Kozarsky; Mariann Grossman; James M. Wilson

Familial hypercholesterolemia (FH) is an inherited deficiency of LDL receptors that has been an important model for liver-directed gene therapy. We are developing approaches for treating FH that are based on direct delivery of recombinant LDL receptor genes to liver in vivo. As a first step towards this goal, replication-defective recombinant adenoviruses were constructed which contained either thelacZ gene or the human LDL receptor cDNA expressed from a β-actin promoter. Primary cultures of hepatocytes were established from two patients with homozygous FH and one nonFH patient, and subsequently exposed to recombinant adenoviruses at MOIs ranging from 0.1 to 5. Essentially all of the cells expressed high levels of the transgene without demonstrable expression of an early or late adenoviral gene product; the level of recombinant-derived LDL receptor protein in transduced FH hepatocytes exceeded the endogenous levels by at least 20-fold. These studies support the utility of recombinant adenoviruses for efficient transduction of recombinant LDL receptor genes into human FH hepatocytes without expression of viral proteins.


Immunological Investigations | 2001

The T lymphocyte structure CD60 contains a sialylated carbohydrate epitope that is expressed on both gangliosides and glycoproteins

David A. Fox; X. He; A. Abe; T. Hollander; Lan Lan Li; L. Kan; A. W. Friedman; Yoji Shimizu; J. A. Shayman; Karen Kozarsky

The CD60 antigen is expressed on a majority of T cells in autoimmune lesions, and anti-CD60 can activate T lymphocytes. CD60 has been defined as the GD3 ganglioside, and subsequently as the 9-O-acetylated form of GD3. However, other evidence suggests that anti-CD60 recognizes a glycoprotein or family of glycoproteins expressed by T lymphocytes. The current studies were undertaken to better define the identity of the CD60 antigen on both T cells and non-T cells. Treatment of intact cells with neuraminidases of various specificities confirmed that detection of the CD60 epitope depends on expression of an α2, 8-disialic acid carbohydrate linkage, as is found in GD3 and related gangliosides. However, the sialic acid polymer colominic acid inhibited anti-GD2 and anti-GD3, but not anti-CD60 from binding to cell surfaces. Expression of CD60 did not correlate with expression of GD3 on a variety of cell lines and T cell populations. Expression of CD60 and 9-O-acetyl-GD3 was roughly parallel on some non-T cell lines such as melanoma cells, but on T cells expression of CD60 was consistently greater. Antibodies to GD2,GD3 and 9-O-acetyl-GD3 were inefective at inhibiting binding of anti-CD60 to CD60+ cells. Activation responses of T cells to anti-CD60 were inducible in either the presence or absence of a response to anti-GD3. A novel inhibitor of glucosyl ceramide synthesis, D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (D-t-P4) reduced expression of GD3 much more than CD60 on activated T lymphocytes. Following biotinylation of HUT78 T cells, anti-CD60 immunoprecipitated a 70 kDa antigen. Taken together, the present data and previous findings suggest that anti-CD60 can recognize both a modified form of the GD3 ganglioside and a carbohydrate-dependent complex epitope present on one or more glycoproteins. This glycoprotein epitope may be the more abundant and functionally significant CD60 antigen on T lymphocytes, while 9-O-acetyl-GD3 is likely to be the principal structure recognized by anti-CD60 on melanoma cells. These findings emphasize the complexity of understanding the functional roles of carbohydrate epitopes in cell activation.


Journal of Gene Medicine | 2003

A tetracycline-regulated adenoviral expression system for in vivo delivery of transgenes to lung and liver

Uwe J. F. Tietge; Karen Kozarsky; Mary H. Donahee; Daniel J. Rader

Recombinant adenoviruses are an established tool for somatic gene transfer to multiple cell types in animals as well as in tissue culture. However, generation of adenoviruses expressing transgenes that are potentially toxic to the host cell line represents a practical problem. The aim of this study was to construct an adenoviral expression system that prevents transgene expression during the generation and propagation of the virus, and allows efficient gene transfer to lung and liver, major target organs of gene therapy.


Human Gene Therapy | 2015

Prevalence of Anti–Adeno-Associated Virus Serotype 8 Neutralizing Antibodies and Arylsulfatase B Cross-Reactive Immunologic Material in Mucopolysaccharidosis VI Patient Candidates for a Gene Therapy Trial

Rita Ferla; Pamela Claudiani; Marco Savarese; Karen Kozarsky; Rossella Parini; Maurizio Scarpa; Maria Alice Donati; Giovanni Sorge; John J. Hopwood; Giancarlo Parenti; Simona Fecarotta; Vincenzo Nigro; Hatice Serap Sivri; Ans T. van der Ploeg; Generoso Andria; Nicola Brunetti-Pierri; Alberto Auricchio

Abstract Recombinant vectors based on adeno-associated virus serotype 8 (AAV8) have been successfully used in the clinic and hold great promise for liver-directed gene therapy. Preexisting immunity against AAV8 or the development of antibodies against the therapeutic transgene product might negatively affect the outcomes of gene therapy. In the prospect of an AAV8-mediated, liver-directed gene therapy clinical trial for mucopolysaccharidosis VI (MPS VI), a lysosomal storage disorder caused by arylsulfatase B (ARSB) deficiency, we investigated in a multiethnic cohort of MPS VI patients the prevalence of neutralizing antibodies (Nab) to AAV8 and the presence of ARSB cross-reactive immunologic material (CRIM), which will either affect the efficacy of gene transfer or the duration of phenotypic correction. Thirty-six MPS VI subjects included in the study harbored 45 (62.5%) missense, 13 (18%) nonsense, 9 (12.5%) frameshift (2 insertions and 7 deletions), and 5 (7%) splicing ARSB mutations. The detection of ARSB protein in 24 patients out of 34 (71%) was predicted by the type of mutations. Preexisting Nab to AAV8 were undetectable in 19/33 (58%) analyzed patients. Twelve out of 31 patients (39%) tested were both negative for Nab to AAV8 and CRIM-positive. In conclusion, this study allows estimating the number of MPS VI patients eligible for a gene therapy trial by intravenous injections of AAV8.

Collaboration


Dive into the Karen Kozarsky's collaboration.

Top Co-Authors

Avatar

James M. Wilson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome F. Strauss

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge