Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen L. Christman is active.

Publication


Featured researches published by Karen L. Christman.


Tissue Engineering | 2004

Fibrin Glue Alone and Skeletal Myoblasts in a Fibrin Scaffold Preserve Cardiac Function after Myocardial Infarction

Karen L. Christman; Hubert H. Fok; Richard E. Sievers; Qizhi Fang; Randall J. Lee

Current efforts in cardiac tissue engineering center around the use of scaffolds that deliver cells to the epicardial surface. In this study, we examined the effects of fibrin glue as an injectable scaffold and wall support in ischemic myocardium. The left coronary artery of rats was occluded for 17 min, followed by reperfusion. Echocardiography was performed 8 days after infarction. One to 2 days later, either 0.5% bovine serum albumin (BSA) in phosphate-buffered saline, fibrin glue alone, skeletal myoblasts alone, or skeletal myoblasts in fibrin glue were injected into the ischemic left ventricle. Echocardiography was again performed 5 weeks after injection. The animals were then sacrificed and the hearts were fresh frozen and sectioned for histology and immunohistochemistry. Both the fractional shortening (FS) and infarct wall thickness of the BSA group decreased significantly after 5 weeks (p = 0.0005 and 0.02, respectively). In contrast, both measurements for the fibrin glue group, cells group, and cells in fibrin glue group did not change significantly (FS: p = 0.18, 0.89, and 0.19, respectively; wall thickness: p = 0.40, 0.44, 0.43, respectively). Fibrin glue is capable of preserving infarct wall thickness and cardiac function after a myocardial infarction in rats and may be useful as a biomaterial scaffold for myocardial cell transplantation.


Biomaterials | 2009

Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering

Jennifer M. Singelyn; Jessica A. DeQuach; Sonya B. Seif-Naraghi; Robert B. Littlefield; Pamela J. Schup-Magoffin; Karen L. Christman

Myocardial tissue lacks the ability to significantly regenerate itself following a myocardial infarction, thus tissue engineering strategies are required for repair. Several injectable materials have been examined for cardiac tissue engineering; however, none have been designed specifically to mimic the myocardium. The goal of this study was to investigate the in vitro properties and in vivo potential of an injectable myocardial matrix designed to mimic the natural myocardial extracellular environment. Porcine myocardial tissue was decellularized and processed to form a myocardial matrix with the ability to gel in vitro at 37 degrees C and in vivo upon injection into rat myocardium. The resulting myocardial matrix maintained a complex composition, including glycosaminoglycan content, and was able to self-assemble to form a nanofibrous structure. Endothelial cells and smooth muscle cells were shown to migrate towards the myocardial matrix both in vitro and in vivo, with a significant increase in arteriole formation at 11 days post-injection. The matrix was also successfully pushed through a clinically used catheter, demonstrating its potential for minimally invasive therapy. Thus, we have demonstrated the initial feasibility and potential of a naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering.


Science Translational Medicine | 2013

Safety and Efficacy of an Injectable Extracellular Matrix Hydrogel for Treating Myocardial Infarction

Sonya B. Seif-Naraghi; Jennifer M. Singelyn; Michael Salvatore; Kent G. Osborn; J. J. Wang; U. Sampat; Oi Ling Kwan; G. M. Strachan; J. Wong; Pamela J. Schup-Magoffin; Rebecca L. Braden; Kendra Bartels; Jessica A. DeQuach; M. Preul; Adam Kinsey; Anthony N. DeMaria; Nabil Dib; Karen L. Christman

A hydrogel derived from myocardial extracellular matrix mitigates negative left ventricular remodeling and improves heart function after myocardial infarction in pigs. Healing Biomaterial Delivered to Heart Repairing a broken heart takes more than just time—it may also take a special hydrogel material derived from the heart itself. After a heart attack, cells die and are replaced by a thick scar, which cannot pump blood like normal tissue. This results in total heart failure and death in these patients that survive the initial heart attack. In response, Seif-Naraghi and colleagues have developed a biomaterial that can be injected into the heart to prevent scar formation and help the heart to heal and function as it normally would. The authors used a pig model to study the effects of a myocardial extracellular matrix (ECM)–derived biomaterial on heart healing after myocardial infarction (MI). Two weeks after MI, the material was delivered via catheter to the target region of the heart—much like it would in a real clinical trial with patients. Control animals received either no injection or saline only. After 3 months, tests were performed to see if the heart had healed, if it functioned properly, and if the material caused any irritation to the heart tissue. Seif-Naraghi et al. reported improvements in heart function in the matrix-injected animals and worsening of function in the controls. Their data suggest that the matrix can prevent post-MI negative left ventricular remodeling by improving systolic function and contractility. Other than function, the material appeared to encourage healthy muscle and blood vessel formation in the infarcted areas, whereas tissue from control animals was thin and fibrotic. This myocardial matrix material did not damage peripheral tissues, such as the lungs and liver, or disrupt cardiac rhythm in pigs. Even with direct injection into the left ventricle lumen in rats, there was no inflammation, edema, or hemorrhage. These data in a large animal show that the myocardial ECM–derived material not only improves functional outcome after a heart attack but also is safe and nontoxic, thus making the material ready to move forward toward clinical tests in people. New therapies are needed to prevent heart failure after myocardial infarction (MI). As experimental treatment strategies for MI approach translation, safety and efficacy must be established in relevant animal models that mimic the clinical situation. We have developed an injectable hydrogel derived from porcine myocardial extracellular matrix as a scaffold for cardiac repair after MI. We establish the safety and efficacy of this injectable biomaterial in large- and small-animal studies that simulate the clinical setting. Infarcted pigs were treated with percutaneous transendocardial injections of the myocardial matrix hydrogel 2 weeks after MI and evaluated after 3 months. Echocardiography indicated improvement in cardiac function, ventricular volumes, and global wall motion scores. Furthermore, a significantly larger zone of cardiac muscle was found at the endocardium in matrix-injected pigs compared to controls. In rats, we establish the safety of this biomaterial and explore the host response via direct injection into the left ventricular lumen and in an inflammation study, both of which support the biocompatibility of this material. Hemocompatibility studies with human blood indicate that exposure to the material at relevant concentrations does not affect clotting times or platelet activation. This work therefore provides a strong platform to move forward in clinical studies with this cardiac-specific biomaterial that can be delivered by catheter.


Journal of the American College of Cardiology | 2012

Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction

Jennifer M. Singelyn; Priya Sundaramurthy; Todd D. Johnson; Pamela J. Schup-Magoffin; Diane P. Hu; Denver M. Faulk; Jean Wang; Kristine M. Mayle; Kendra Bartels; Michael Salvatore; Adam Kinsey; Anthony N. DeMaria; Nabil Dib; Karen L. Christman

OBJECTIVES This study evaluated the use of an injectable hydrogel derived from ventricular extracellular matrix (ECM) for treating myocardial infarction (MI) and its ability to be delivered percutaneously. BACKGROUND Injectable materials offer promising alternatives to treat MI. Although most of the examined materials have shown preserved or improved cardiac function in small animal models, none have been specifically designed for the heart, and few have translated to catheter delivery in large animal models. METHODS We have developed a myocardial-specific hydrogel, derived from decellularized ventricular ECM, which self-assembles when injected in vivo. Female Sprague-Dawley rats underwent ischemia reperfusion followed by injection of the hydrogel or saline 2 weeks later. The implantation response was assessed via histology and immunohistochemistry, and the potential for arrhythmogenesis was examined using programmed electrical stimulation 1 week post-injection. Cardiac function was analyzed with magnetic resonance imaging 1 week pre-injection and 4 weeks post-MI. In a porcine model, we delivered the hydrogel using the NOGA-guided MyoStar catheter (Biologics Delivery Systems, Irwindale, California), and utilized histology to assess retention of the material. RESULTS We demonstrate that injection of the material in the rat MI model increases endogenous cardiomyocytes in the infarct area and maintains cardiac function without inducing arrhythmias. Furthermore, we demonstrate feasibility of transendocardial catheter injection in a porcine model. CONCLUSIONS To our knowledge, this is the first in situ gelling material to be delivered via transendocardial injection in a large animal model, a critical step towards the translation of injectable materials for treating MI in humans. Our results warrant further study of this material in a large animal model of MI and suggest this may be a promising new therapy for treating MI.


Soft Matter | 2006

Nanopatterning proteins and peptides

Karen L. Christman; Vanessa D. Enriquez-Rios; Heather D. Maynard

A variety of techniques have been developed to site-specifically immobilize biomolecules onto surfaces with resolutions below one micron. The ability to pattern proteins and peptides in particular has great potential for applications in biosensors, biomaterials, and tissue engineering. For example, immobilizing proteins at the nanoscale could lead to the development of diagnostic protein nanoarrays, while patterning peptides could lead to greater control over the cell/biomaterial interface. This review discusses the methods that have been reported for patterning proteins and peptides with submicron and nanometer resolutions.


Advanced Materials | 2015

Enzyme‐Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction

Mary M. Nguyen; Andrea S. Carlini; Miao Ping Chien; Sonya Sonnenberg; Colin Luo; Rebecca L. Braden; Kent G. Osborn; Yiwen Li; Nathan C. Gianneschi; Karen L. Christman

A method for targeting to and retaining intravenously injected nanoparticles at the site of acute myocardial infarction in a rat model is described. Enzyme-responsive peptide-polymer amphiphiles are assembled as spherical micellar nanoparticles, and undergo a morphological transition from spherical-shaped, discrete materials to network-like assemblies when acted upon by matrix metalloproteinases (MMP-2 and MMP-9), which are up-regulated in heart tissue post-myocardial infarction.


Journal of the American College of Cardiology | 2011

Biomaterials for the Treatment of Myocardial Infarction: A 5-Year Update

Aboli A. Rane; Karen L. Christman

The first review on biomaterials for the treatment of myocardial infarction (MI) was written in 2006. In the last 5 years, the general approaches for biomaterial treatment of MI and subsequent left ventricular remodeling remain the same, namely, left ventricular restraints, epicardial patches, and injectable therapies. Nonetheless, there have been significant developments in this field, including advancement of biomaterial therapies to large animal pre-clinical studies and, more recently, to clinical trials. This review focuses on the progress made in the field of cardiac biomaterial treatments for MI over the last 5 years.


PLOS ONE | 2010

Simple and High Yielding Method for Preparing Tissue Specific Extracellular Matrix Coatings for Cell Culture

Jessica A. DeQuach; Valeria Mezzano; Amar Miglani; Stephan Lange; Gordon Keller; Farah Sheikh; Karen L. Christman

Background The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. Methodology/Principal Findings We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. Conclusions This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.


Journal of Cardiovascular Translational Research | 2010

Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of Decellularized Matrices

Jennifer M. Singelyn; Karen L. Christman

Cardiovascular disease continues to be the leading cause of death, suggesting that new therapies are needed to treat the progression of heart failure post-myocardial infarction. As cardiac tissue has a limited ability to regenerate itself, experimental biomaterial therapies have focused on the replacement of necrotic cardiomyocytes and repair of the damaged extracellular matrix. While acellular and cellular cardiac patches are applied surgically to the epicardial surface of the heart, injectable materials offer the prospective advantage of minimally invasive delivery directly into the myocardium to either replace the damaged extracellular matrix or to act as a scaffold for cell delivery. Cardiac-specific decellularized matrices offer the further advantage of being biomimetic of the native biochemical and structural matrix composition, as well as the potential to be autologous therapies. This review will focus on the requirements of an ideal scaffold for catheter-based delivery as well as highlight the promise of decellularized matrices as injectable materials for cardiac repair.


Acta Biomaterialia | 2011

Injectable hydrogel scaffold from decellularized human lipoaspirate.

D. Adam Young; Dina O. Ibrahim; Diane Hu; Karen L. Christman

Soft tissue fillers are rapidly gaining popularity for aesthetic improvements or repair of adipose tissue deficits. Several injectable biopolymers have been investigated for this purpose, but often show rapid resorption or limited adipogenesis and do not mimic the native adipose extracellular matrix (ECM). We have generated an injectable adipose matrix scaffold by efficiently removing both the cellular and lipid contents of human lipoaspirate. The decellularized material retained the complex composition of peptides and glycosaminoglycans found in native adipose ECM. This matrix can be further processed by solubilizing the extracted ECM to generate a thermally responsive hydrogel that self-assembles upon subcutaneous injection. This hydrogel also supports the growth and survival of patient matched adipose-derived stem cells in vitro. The development of an injectable hydrogel from human lipoaspirate represents a minimally invasive option for adipose tissue engineering in terms of both the collection of source material and delivery of the scaffold.

Collaboration


Dive into the Karen L. Christman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randall J. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge