Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen L. Gamble is active.

Publication


Featured researches published by Karen L. Gamble.


Journal of Immunology | 2010

Dysregulation of Inflammatory Responses by Chronic Circadian Disruption

Oscar Castanon-Cervantes; Mingwei Wu; J. Christopher Ehlen; Ketema N. Paul; Karen L. Gamble; Russell L. Johnson; Rachel C. Besing; Michael Menaker; Andrew T. Gewirtz; Alec J. Davidson

Circadian rhythms modulate nearly every mammalian physiological process. Chronic disruption of circadian timing in shift work or during chronic jet lag in animal models leads to a higher risk of several pathologies. Many of these conditions in both shift workers and experimental models share the common risk factor of inflammation. In this study, we show that experimentally induced circadian disruption altered innate immune responses. Endotoxemic shock induced by LPS was magnified, leading to hypothermia and death after four consecutive weekly 6-h phase advances of the light/dark schedule, with 89% mortality compared with 21% in unshifted control mice. This may be due to a heightened release of proinflammatory cytokines in response to LPS treatment in shifted animals. Isolated peritoneal macrophages harvested from shifted mice exhibited a similarly heightened response to LPS in vitro, indicating that these cells are a target for jet lag. Sleep deprivation and stress are known to alter immune function and are potential mediators of the effects we describe. However, polysomnographic recording in mice exposed to the shifting schedule revealed no sleep loss, and stress measures were not altered in shifted mice. In contrast, we observed altered or abolished rhythms in the expression of clock genes in the central clock, liver, thymus, and peritoneal macrophages in mice after chronic jet lag. We conclude that circadian disruption, but not sleep loss or stress, are associated with jet lag-related dysregulation of the innate immune system. Such immune changes might be a common mechanism for the myriad negative health effects of shift work.


Nature Reviews Endocrinology | 2014

Circadian clock control of endocrine factors

Karen L. Gamble; Ryan Berry; Stuart J. Frank; Martin E. Young

Organisms experience dramatic fluctuations in demands and stresses over the course of the day. In order to maintain biological processes within physiological boundaries, mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors have an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 h period, but so too does responsiveness of target tissues to these signals or stimuli. Emerging evidence suggests that these daily endocrine oscillations do not occur solely in response to behavioural fluctuations associated with sleep–wake and feeding–fasting cycles, but are orchestrated by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks by genetic and/or environmental factors seems to precipitate numerous common disorders, including the metabolic syndrome and cancer. Collectively, these observations suggest that strategies designed to realign normal circadian rhythmicities hold potential for the treatment of various endocrine-related disorders.


The Journal of Neuroscience | 2012

Retinal Dopamine Mediates Multiple Dimensions of Light-Adapted Vision

Chad R. Jackson; Guo Xiang Ruan; Fazila Aseem; Jane Abey; Karen L. Gamble; Greg Stanwood; Richard D. Palmiter; P. Michael Iuvone; Douglas G. McMahon

Dopamine is a key neuromodulator in the retina and brain that supports motor, cognitive, and visual function. Here, we developed a mouse model on a C57 background in which expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase, is specifically disrupted in the retina. This model enabled assessment of the overall role of retinal dopamine in vision using electrophysiological (electroretinogram), psychophysical (optokinetic tracking), and pharmacological techniques. Significant disruptions were observed in high-resolution, light-adapted vision caused by specific deficits in light responses, contrast sensitivity, acuity, and circadian rhythms in this retinal dopamine-depleted mouse model. These global effects of retinal dopamine on vision are driven by the differential actions of dopamine D1 and D4 receptors on specific retinal functions and appear to be due to the ongoing bioavailability of dopamine rather than developmental effects. Together, our data indicate that dopamine is necessary for the circadian nature of light-adapted vision as well as optimal contrast detection and acuity.


PLOS ONE | 2011

Shift Work in Nurses: Contribution of Phenotypes and Genotypes to Adaptation

Karen L. Gamble; Alison A. Motsinger-Reif; Akiko Hida; Hugo M. Borsetti; Stein V. Servick; Christopher M. Ciarleglio; Sam Robbins; Jennifer Hicks; Krista Carver; Nalo Hamilton; Nancy Wells; Marshall Summar; Douglas G. McMahon; Carl Hirschie Johnson

Background Daily cycles of sleep/wake, hormones, and physiological processes are often misaligned with behavioral patterns during shift work, leading to an increased risk of developing cardiovascular/metabolic/gastrointestinal disorders, some types of cancer, and mental disorders including depression and anxiety. It is unclear how sleep timing, chronotype, and circadian clock gene variation contribute to adaptation to shift work. Methods Newly defined sleep strategies, chronotype, and genotype for polymorphisms in circadian clock genes were assessed in 388 hospital day- and night-shift nurses. Results Night-shift nurses who used sleep deprivation as a means to switch to and from diurnal sleep on work days (∼25%) were the most poorly adapted to their work schedule. Chronotype also influenced efficacy of adaptation. In addition, polymorphisms in CLOCK, NPAS2, PER2, and PER3 were significantly associated with outcomes such as alcohol/caffeine consumption and sleepiness, as well as sleep phase, inertia and duration in both single- and multi-locus models. Many of these results were specific to shift type suggesting an interaction between genotype and environment (in this case, shift work). Conclusions Sleep strategy, chronotype, and genotype contribute to the adaptation of the circadian system to an environment that switches frequently and/or irregularly between different schedules of the light-dark cycle and social/workplace time. This study of shift work nurses illustrates how an environmental “stress” to the temporal organization of physiology and metabolism can have behavioral and health-related consequences. Because nurses are a key component of health care, these findings could have important implications for health-care policy.


Nature Neuroscience | 2011

Perinatal photoperiod imprints the circadian clock

Christopher M. Ciarleglio; John C. Axley; Benjamin R. Strauss; Karen L. Gamble; Douglas G. McMahon

Using real-time gene expression imaging and behavioral analysis, we found that the perinatal photoperiod has lasting effects on the circadian rhythms expressed by clock neurons as well as on mouse behavior, and sets the responsiveness of the biological clock to subsequent changes in photoperiod. These developmental gene × environment interactions tune circadian clock responses to subsequent seasonal photoperiods and may contribute to the influence of season on neurobehavioral disorders in humans.


International Journal of Obesity | 2013

Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice

Molly S. Bray; William F. Ratcliffe; Maximiliano H. Grenett; Rachel A. Brewer; Karen L. Gamble; Martin E. Young

Background:Considerable evidence suggests that the time of day at which calories are consumed markedly impacts body weight gain and adiposity. However, a precise quantification of energy balance parameters during controlled animal studies enforcing time-of-day-restricted feeding is currently lacking in the absence of direct human interaction.Objective:The purpose of the present study was therefore to quantify the effects of restricted feeding during the light (sleep)-phase in a fully-automated, computer-controlled comprehensive laboratory animal monitoring system (CLAMS) designed to modulate food access in a time-of-day-dependent manner. Energy balance, gene expression (within metabolically relevant tissues), humoral factors and body weight were assessed.Results:We report that relative to mice fed only during the dark (active)-phase, light (sleep)-phase fed mice: (1) consume a large meal upon initiation of food availability; (2) consume greater total calories per day; (3) exhibit a higher respiratory exchange ratio (indicative of decreased reliance on lipid/fatty acid oxidation); (4) exhibit tissue-specific alterations in the phases and amplitudes of circadian clock and metabolic genes in metabolically active tissues (greatest phase differences observed in the liver and diminution of amplitudes in epididymal fat, gastrocnemius muscle and heart); (5) exhibit diminished amplitude in humoral factor diurnal variations (for example, corticosterone); and (6) exhibit greater weight gain within 9 days of restricted feeding.Conclusions:Collectively, these data suggest that weight gain following light (sleep)-phase restricted feeding is associated with significant alterations in energy balance, as well as dyssynchrony between metabolically active organs.


The Journal of Neuroscience | 2007

Gastrin-Releasing Peptide Mediates Light-Like Resetting of the Suprachiasmatic Nucleus Circadian Pacemaker through cAMP Response Element-Binding Protein and Per1 Activation

Karen L. Gamble; Gregg C. Allen; Tongrong Zhou; Douglas G. McMahon

Circadian rhythmicity in the primary mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus, is maintained by transcriptional and translational feedback loops among circadian clock genes. Photic resetting of the SCN pacemaker involves induction of the clock genes Period1 (Per1) and Period2 (Per2) and communication among distinct cell populations. Gastrin-releasing peptide (GRP) is localized to the SCN ventral retinorecipient zone, from where it may communicate photic resetting signals within the SCN network. Here, we tested the putative role of GRP as an intra-SCN light signal at the behavioral and cellular levels, and we also tested whether GRP actions are dependent on activation of the cAMP response element-binding protein (CREB) pathway and Per1. In vivo microinjections of GRP to the SCN regions of Per1::green fluorescent protein (GFP) mice during the late night induced Per1::GFP throughout the SCN, including a limited population of arginine vasopressin-immunoreactive (AVP-IR) neurons. Blocking spike-mediated communication with tetrodotoxin did not disrupt overall Per1::GFP induction but did reduce induction within AVP-IR neurons. In vitro GRP application resulted in persistent increases in the spike frequency of Per1::GFP-induced neurons. Blocking endogenous Per1 with antisense oligodeoxynucleotides inhibited GRP-induced increases in spike frequency. Furthermore, inhibition of CREB-mediated gene activation with decoy oligonucleotides blocked GRP-induced phase shifts of PER2::luciferase rhythms in SCN slices. Altogether, these results indicate that GRP communicates phase resetting signals within the SCN network via both spike-dependent and spike-independent mechanisms, and that activation of the CREB pathway and Per1 are key steps in mediating downstream events in GRP resetting of SCN neurons.


Molecular Biology of the Cell | 2014

Formation of α-Synuclein Lewy Neurite-like aggregates in Axons Impedes the Transport of Distinct Endosomes

Laura A. Volpicelli-Daley; Karen L. Gamble; Christine E. Schultheiss; Dawn M. Riddle; Andrew B. West; Virginia M.-Y. Lee

Pathological α-synuclein inclusions in axons impair transport of Rab7 and TrkB receptor-containing endosomes, as well as autophagosomes. Transport of synaptophysin and mitochondria is unaltered. Selective defects in axonal transport may contribute to the etiology of Parkinsons disease and have important implications for treatment.


Journal of Biological Chemistry | 2011

O-GlcNAcylation, Novel Post-Translational Modification Linking Myocardial Metabolism and Cardiomyocyte Circadian Clock

David J. Durgan; Betty Pat; Boglárka Laczy; Jerry A. Bradley; Ju-Yun Tsai; Maximiliano H. Grenett; William F. Ratcliffe; Rachel A. Brewer; J. Nagendran; Carolina Villegas-Montoya; Chenhang Zou; Luyun Zou; Russell L. Johnson; Jason R. B. Dyck; Molly S. Bray; Karen L. Gamble; John C. Chatham; Martin E. Young

The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-of-day-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein. Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.


The Journal of Neuroscience | 2009

Population Encoding by Circadian Clock Neurons Organizes Circadian Behavior

Christopher M. Ciarleglio; Karen L. Gamble; John C. Axley; Benjamin R. Strauss; Jeremiah Y. Cohen; Christopher S. Colwell; Douglas G. McMahon

Mammalian circadian rhythms are orchestrated by the suprachiasmatic nuclei (SCN) of the hypothalamus. The SCN are composed of circadian clock neurons, but the mechanisms by which these populations of neuronal oscillators encode rhythmic behavior are incompletely understood. We have used ex vivo real-time gene expression imaging of the neural correlates of circadian behavior, combined with genetic disruption of vasoactive intestinal polypeptide, a key SCN signaling molecule, to examine the neural basis of circadian organization in the SCN. We show that the coherence and timing of clock neuron rhythms are correlated with the coherence and timing of behavioral rhythms within individual mice and that the degree of disruption of SCN neuronal organization correlates with the degree of behavioral disruption within individuals. Our results suggest that the SCN encode circadian phase as a temporal population vector of its constituent neurons; such that as the neuronal population becomes desynchronized, phase information becomes ambiguous.

Collaboration


Dive into the Karen L. Gamble's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin E. Young

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Russell L. Johnson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jodi R. Paul

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren M. Hablitz

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ketema N. Paul

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rachel C. Besing

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge