Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen L. Huss is active.

Publication


Featured researches published by Karen L. Huss.


Cancer Research | 2005

The Protein Kinase Cβ–Selective Inhibitor, Enzastaurin (LY317615.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, and Suppresses Growth of Human Colon Cancer and Glioblastoma Xenografts

Jeremy R. Graff; Ann M. McNulty; Kimberly R. Hanna; Bruce W. Konicek; Rebecca L. Lynch; Spring N. Bailey; Crystal Banks; Andrew Capen; Robin L. Goode; Jason E. Lewis; Lillian Sams; Karen L. Huss; Robert M. Campbell; Philip W. Iversen; Blake Lee Neubauer; Thomas J. Brown; Luna Musib; Sandaruwan Geeganage; Donald Thornton

Activation of protein kinase Cbeta (PKCbeta) has been repeatedly implicated in tumor-induced angiogenesis. The PKCbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Activation of PKCbeta has now also been implicated in tumor cell proliferation, apoptosis, and tumor invasiveness. Herein, we show that Enzastaurin has a direct effect on human tumor cells, inducing apoptosis and suppressing the proliferation of cultured tumor cells. Enzastaurin treatment also suppresses the phosphorylation of GSK3betaser9, ribosomal protein S6(S240/244), and AKT(Thr308). Oral dosing with Enzastaurin to yield plasma concentrations similar to those achieved in clinical trials significantly suppresses the growth of human glioblastoma and colon carcinoma xenografts. As in cultured tumor cells, Enzastaurin treatment suppresses the phosphorylation of GSK3beta in these xenograft tumor tissues. Enzastaurin treatment also suppresses GSK3beta phosphorylation to a similar extent in peripheral blood mononuclear cells (PBMCs) from these treated mice. These data show that Enzastaurin has a direct antitumor effect and that Enzastaurin treatment suppresses GSK3beta phosphorylation in both tumor tissue and in PBMCs, suggesting that GSK3beta phosphorylation may serve as a reliable pharmacodynamic marker for Enzastaurin activity. With previously published reports, these data support the notion that Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis.


Molecular Cancer Therapeutics | 2011

A Novel, Selective Inhibitor of Fibroblast Growth Factor Receptors That Shows a Potent Broad Spectrum of Antitumor Activity in Several Tumor Xenograft Models

Genshi Zhao; Wei Ying Li; Daohong Chen; James Robert Henry; Hong Yu Li; Zhaogen Chen; Mohammad Zia-Ebrahimi; Laura J. Bloem; Yan Zhai; Karen L. Huss; Sheng Bin Peng; Denis J. McCann

The fibroblast growth factor receptors (FGFR) are tyrosine kinases that are present in many types of endothelial and tumor cells and play an important role in tumor cell growth, survival, and migration as well as in maintaining tumor angiogenesis. Overexpression of FGFRs or aberrant regulation of their activities has been implicated in many forms of human malignancies. Therefore, targeting FGFRs represents an attractive strategy for development of cancer treatment options by simultaneously inhibiting tumor cell growth, survival, and migration as well as tumor angiogenesis. Here, we describe a potent, selective, small-molecule FGFR inhibitor, (R)-(E)-2-(4-(2-(5-(1-(3,5-Dichloropyridin-4-yl)ethoxy)-1H-indazol-3yl)vinyl)-1H-pyrazol-1-yl)ethanol, designated as LY2874455. This molecule is active against all 4 FGFRs, with a similar potency in biochemical assays. It exhibits a potent activity against FGF/FGFR-mediated signaling in several cancer cell lines and shows an excellent broad spectrum of antitumor activity in several tumor xenograft models representing the major FGF/FGFR relevant tumor histologies including lung, gastric, and bladder cancers and multiple myeloma, and with a well-defined pharmacokinetic/pharmacodynamic relationship. LY2874455 also exhibits a 6- to 9-fold in vitro and in vivo selectivity on inhibition of FGF- over VEGF-mediated target signaling in mice. Furthermore, LY2874455 did not show VEGF receptor 2–mediated toxicities such as hypertension at efficacious doses. Currently, this molecule is being evaluated for its potential use in the clinic. Mol Cancer Ther; 10(11); 2200–10. ©2011 AACR.


Journal of Biological Chemistry | 2013

Pharmacological Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT), an Enzyme Essential for NAD+ Biosynthesis, in Human Cancer Cells METABOLIC BASIS AND POTENTIAL CLINICAL IMPLICATIONS

Bo Tan; Debra A. Young; Zhao Hai Lu; Tao Wang; Timothy I. Meier; Robert L. Shepard; Kenneth D. Roth; Yan Zhai; Karen L. Huss; Ming-Shang Kuo; James Ronald Gillig; Saravanan Parthasarathy; Timothy Paul Burkholder; Michele C. Smith; Sandaruwan Geeganage; Genshi Zhao

Background: NAMPT catalyzes the rate-limiting reaction in converting nicotinamide to NAD+ in cancers. Results: NAMPT inhibition attenuates glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step, resulting in perturbing metabolic pathways related to glycolysis. Conclusion: The metabolic basis of NAMPT inhibition is the attenuation of glycolysis by reducing NAD+ available to glyceraldehyde 3-phosphate dehydrogenase. Significance: This study sheds new light on how NAMPT regulates cancer metabolism. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD+, essential for cellular metabolism, energy production, and DNA repair. NAMPT has been extensively studied because of its critical role in these cellular processes and the prospect of developing therapeutics against the target, yet how it regulates cellular metabolism is not fully understood. In this study we utilized liquid chromatography-mass spectrometry to examine the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and serine biosynthesis in cancer cells and tumor xenografts. We show for the first time that NAMPT inhibition leads to the attenuation of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step due to the reduced availability of NAD+ for the enzyme. The attenuation of glycolysis results in the accumulation of glycolytic intermediates before and at the glyceraldehyde 3-phosphate dehydrogenase step, promoting carbon overflow into the pentose phosphate pathway as evidenced by the increased intermediate levels. The attenuation of glycolysis also causes decreased glycolytic intermediates after the glyceraldehyde 3-phosphate dehydrogenase step, thereby reducing carbon flow into serine biosynthesis and the TCA cycle. Labeling studies establish that the carbon overflow into the pentose phosphate pathway is mainly through its non-oxidative branch. Together, these studies establish the blockade of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step as the central metabolic basis of NAMPT inhibition responsible for ATP depletion, metabolic perturbation, and subsequent tumor growth inhibition. These studies also suggest that altered metabolite levels in tumors can be used as robust pharmacodynamic markers for evaluating NAMPT inhibitors in the clinic.


Eukaryotic Cell | 2004

Discovery of cercosporamide, a known antifungal natural product, as a selective Pkc1 kinase inhibitor through high-throughput screening.

Andrea Sussman; Karen L. Huss; Li-Chun Chio; Steve Heidler; Margaret Shaw; Doreen Ma; Guoxin Zhu; Robert M. Campbell; Tae-Sik Park; Palaniappan Kulanthaivel; John E. Scott; John W. Carpenter; Mark A. Strege; Matthew David Belvo; James R. Swartling; Anthony S. Fischl; Wu-Kuang Yeh; Chuan Shih; Xiang S. Ye

ABSTRACT The Pkc1-mediated cell wall integrity-signaling pathway is highly conserved in fungi and is essential for fungal growth. We thus explored the potential of targeting the Pkc1 protein kinase for developing broad-spectrum fungicidal antifungal drugs through a Candida albicans Pkc1-based high-throughput screening. We discovered that cercosporamide, a broad-spectrum natural antifungal compound, but previously with an unknown mode of action, is actually a selective and highly potent fungal Pkc1 kinase inhibitor. This finding provides a molecular explanation for previous observations in which Saccharomyces cerevisiae cell wall mutants were found to be highly sensitive to cercosporamide. Indeed, S. cerevisiae mutant cells with reduced Pkc1 kinase activity become hypersensitive to cercosporamide, and this sensitivity can be suppressed under high-osmotic growth conditions. Together, the results demonstrate that cercosporamide acts selectively on Pkc1 kinase and, thus, they provide a molecular mechanism for its antifungal activity. Furthermore, cercosporamide and a β-1,3-glucan synthase inhibitor echinocandin analog, by targeting two different key components of the cell wall biosynthesis pathway, are highly synergistic in their antifungal activities. The synergistic antifungal activity between Pkc1 kinase and β-1,3-glucan synthase inhibitors points to a potential highly effective combination therapy to treat fungal infections.


Journal of Medicinal Chemistry | 2008

Optimization of a Dihydropyrrolopyrazole Series of Transforming Growth Factor-β Type I Receptor Kinase Domain Inhibitors: Discovery of an Orally Bioavailable Transforming Growth Factor-β Receptor Type I Inhibitor as Antitumor Agent

Hong Yu Li; William Thomas Mcmillen; Charles R. Heap; Denis J. McCann; Lei Yan; Robert M. Campbell; Sreenivasa Reedy Mundla; Chi Hsin R King; Elizabeth A. Dierks; Bryan D. Anderson; Karen S. Britt; Karen L. Huss; Matthew Voss; Yan Wang; David K. Clawson; Jonathan M. Yingling; J. Scott Sawyer

In our continuing effort to expand the SAR of the quinoline domain of dihydropyrrolopyrazole series, we have discovered compound 15d, which demonstrated the antitumor efficacy with oral bioavailability. This effort also demonstrated that the PK/PD in vivo target inhibition paradigm is an effective approach to assess potential for antitumor efficacy. The dihydropyrrolopyrazole inhibitor 15d (LY2109761) is representative of a novel series of antitumor agents.


Journal of Biomolecular Screening | 2007

Development of a Transcreener™ Kinase Assay for Protein Kinase A and Demonstration of Concordance of Data with a Filter-Binding Assay Format

Karen L. Huss; Robert M. Campbell

A Transcreener™ kinase fluorescence polarization (FP) assay has been developed for the serine/threonine kinase protein kinase A (PKA). The PKA Transcreener™ kinase assay is an homogenous, competitive antibody-based FP assay that uses Far Red Alexa Fluor 633-labeled adenosine 5′ disphosphate (ADP) tracer and mouse monoclonal anti-ADP antibody. The Transcreener™ PKA assay was validated with both known PKA inhibitors and library compounds. The Transcreener™ PKA assay is resistant to low-wavelength (or common) fluorescent interference from small-molecule library compounds and generates IC50 results comparable with current radioactive filter-binding assay. (Journal of Biomolecular Screening 2007:578-584)


Journal of Proteome Research | 2009

Capture of Drug Targets from Live Cells Using a Multipurpose Immuno-Chemo-Proteomics Tool

Chaitanya Saxena; Tabetha M. Bonacci; Karen L. Huss; Laura J. Bloem; Richard E. Higgs; John E. Hale

Recently we have described the development of an Immuno-chemo-proteomics method for drug target deconvolution and profiling the toxicity of known drugs ( Saxena , C. ; Zhen , E. ; Higgs , R. E. ; Hale , J. E. J. Proteome Res. 2008, 8 , 3490 - 3497 ). The orthogonal nature and advantage of the newly developed method over existing ones were presented. Most commonly, a small molecule was coupled to an epitope and used as an affinity probe to bind targets and later antibody against the epitope was used to isolate the probe-protein complex. However, such studies performed using cell lysates are prone to false positive identification because the protein source is not in its native physiological condition. Here we describe the development and application of a multipurpose soluble probe where a small molecule was coupled to a fluorophore-tagged cell-permeable peptide epitope, which was used to affinity isolate binding proteins from live cells. Fluorophore coupling allowed direct visualization of the compound in the cells, and cell permeability of the probe provided opportunity to capture the targets from the live cell. The GSK3-beta inhibitor Bisindolylmaleimide-III was coupled to a peptide containing the fluorescein-tagged TAT epitope. Following incubation with the live cells, the compound and associated proteins were affinity isolated using antifluorescein antibody beads. Using this approach, we captured the known Bisindolylmaleimide-III target GSK3-beta and previously unidentified targets from live cells. Dose-dependent inhibition of target binding to probe in the presence of uncoupled compound validated the approach. This method was directly compared with the one where cell lysate was used as the protein source providing an advanced strategy to aid in target deconvolution and help to eliminate false positives originating from non-native protein source.


Journal of Biomolecular Screening | 2005

Development of a Microplate-Based, Electrophoretic Fluorescent Protein Kinase A Assay: Comparison with Filter-Binding and Fluorescence Polarization Assay Formats

Siobhan Miick; Shila Jalali; Brian P. Dwyer; John R. Havens; Donald Thomas; Manuel A. Jimenez; Mathew T. Simpson; Betsy Zile; Karen L. Huss; Robert M. Campbell

A microplate-based electrophoretic assay has been developed for the serine/threonine kinase protein kinase A (PKA). The ElectroCapture™ PKA assay developed uses a positively charged, lissamine-rhodamine–labeled kemptide peptide substrate for the kinase reaction and Nanogen’s ElectroCapture™ HTS Workstation and 384-well laminated membrane plates to electrophoretically separate the negatively charged phosphorylated peptide product from the kinase reaction mix. After the electrophoretic separation, the amount of rhodamine-labeled phosphopeptide product was quantified using a Tecan Ultra384 fluorescence reader. The ElectroCapture™ PKA assay was validated with both known PKA inhibitors and library compounds. The pKiapp results obtained in the ElectroCapture™ PKA assay were comparable to those generated with current radioactive filter-binding assay and antibody-based competitive fluorescence polarization PKA assay formats.


Cancer Research | 2017

Abstract 4973: Discovery of LY3214996, a selective and novel ERK1/2 inhibitor with potent antitumor activities in cancer models with MAPK pathway alterations

Shripad V. Bhagwat; William Thomas Mcmillen; Shufen Cai; Baohui Zhao; Matthew Whitesell; Lisa Kindler; Robert Flack; Wenjuan Wu; Karen L. Huss; Bryan D. Anderson; Xiu-Juan Yuan; Susan Jaken; Denis J. McCann; Brian Michael Mathes; Andrew J. Dropsey; Jason Manro; Jennie L. Walgren; Eunice Yuen; Xueqian Gong; Michael J. Rodriguez; Jianping Huang; Ramon V. Tiu; Sajan Joseph; Sheng-Bin Peng

The RAS/MAPK pathway is dysregulated in approximately 30% of human cancers, and the extracellular-signal-regulated kinases (ERK1 and ERK2) serves as key central nodes within this pathway. The feasibility and clinical impact of targeting the RAS/MAPK pathway has been demonstrated by the therapeutic success of BRAF and MEK inhibitors in BRAF V600E/K metastatic melanoma. However, resistance develops frequently through reactivation of the pathway. Therefore, simultaneous targeting of multiple effectors such as RAF, MEK and ERK in this pathway, offers a potential for enhanced efficacy while delaying and overcoming resistance. LY3214996 is a highly selective inhibitor of ERK1 and ERK2, with IC50 of 5 nM for both enzymes in biochemical assays. It potently inhibits cellular phospho-RSK1 in BRAF and RAS mutant cancer cell lines. In an unbiased tumor cell panel sensitivity profiling for inhibition of cell proliferation, tumor cells with MAPK pathway alterations including BRAF, NRAS or KRAS mutation are generally sensitivity to LY3214996. In tumor xenograft models, LY3214996 inhibits PD biomarker phospho-p90RSK1 in tumors and the PD effects are correlated with compound exposures and anti-tumor activities. LY3214996 shows either similar or superior anti-tumor activity as compared to other published ERK inhibitors in BRAF or RAS mutant cell lines and xenograft models. Oral administration of single-agent LY3214996 significantly inhibits tumor growth in vivo and is well tolerated in BRAF or NRAS mutant melanoma, BRAF or KRAS mutant colorectal, lung and pancreatic cancer xenografts or PDX models. Therefore, LY3214996 can be tailored for treatment of cancers with MAPK pathway alteration. In addition, LY3214996 has anti-tumor activity in a vemurafenib-resistant A375 melanoma xenograft model due to MAPK reactivation, may have potential for treatment of melanoma patients who have failed BRAF therapies. More importantly, LY3214996 can be combined with investigational and approved agents in preclinical models, particularly KRAS mutant models. Combination treatment of LY3214996 and CDK4/6 inhibitor abemaciclib was well tolerated and results in potent tumor growth inhibition or regression in multiple in vivo cancer models, including KRAS mutant colorectal and non-small cell lung cancers. Here, we first report the preclinical characterization of LY3214996, a novel small molecule ERK1/2 inhibitor currently in Phase I clinical trials in patients with advanced and metastatic cancers (NCT02857270). Citation Format: Shripad V. Bhagwat, William T. McMillen, Shufen Cai, Baohui Zhao, Matthew Whitesell, Lisa Kindler, Robert S. Flack, Wenjuan Wu, Karen Huss, Bryan Anderson, Xiu-Juan Yuan, Susan Jaken, Denis McCann, Brian Mathes, Andrew J. Dropsey, Jason Manro, Jennie Walgren, Eunice Yuen, Xueqian Gong, Michael J. Rodriguez, Jianping Huang, Ramon V. Tiu, Sajan Joseph, Sheng-Bin Peng. Discovery of LY3214996, a selective and novel ERK1/2 inhibitor with potent antitumor activities in cancer models with MAPK pathway alterations [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4973. doi:10.1158/1538-7445.AM2017-4973


Cancer Research | 2017

Abstract 3231: Identifying high quality, potent and selective pyrimidinylthienopyrrolone inhibitors of ERK1/2 kinase: LY3214996

Gaiying Zhao; William Thomas Mcmillen; Shufen Cai; Baohui Zhao; Matthew Whitesell; Wenjuan Wu; Karen L. Huss; Bryan D. Anderson; Xiu-Juan Yuan; Susan Jaken; Lisa Kindler; Robert Flack; Denis J. McCann; Brian Michael Mathes; Andrew J. Dropsey; Jennie L. Walgren; Eunice Yuen; Jason Manro; Xueqian Gong; Guillermo S. Cortez; Johnathan Alexander Mclean; Michael J. Rodriguez; Ramon V. Tiu; Shripad V. Bhagwat; Sajan Joseph

The ERK/MAPK pathway plays a central role in the regulation of critical cellular processes and is activated in more than 30% of human cancers. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. ERK inhibitors have the potential to address resistance caused by ERK reactivation. Herein, a potent, selective small molecule ERK1/2 inhibitor is described. LY3214996 possesses an optimal balance of potency (hERK1 IC50 5 nM, hERK2 IC50 5nM, pRSK IC50 0.43 µM), solubility (FaSSIF solubility at pH 6.5 0.133 µM), PK properties (dog, AUCoral 23800 nM*hr, CL 12.1 mL/min/kg, bioavailability 75.4%), IVTI (TED50 =16 mg/kg pRSK1) and demonstrated significant in vivo efficacy in several human cancer xenograft models. LY3214996 is currently undergoing early clinical evaluation. Citation Format: Gaiying Zhao, William T. McMillen, Shufen Cai, Baohui Zhao, Matthew Whitesell, Wenjuan Wu, Karen Huss, Bryan Anderson, Xiu-Juan Yuan, Susan Jaken, Lisa Kindler, Robert S. Flack, Denis McCann, Brian Mathes, Andrew J. Dropsey, Jennie Walgren, Eunice Yuen, Jason Manro, Xueqian Gong, Guillermo Cortez, Johnathan McLean, Michael J. Rodriguez, Ramon V. Tiu, Shripad V. Bhagwat, Sajan Joseph. Identifying high quality, potent and selective pyrimidinylthienopyrrolone inhibitors of ERK1/2 kinase: LY3214996 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3231. doi:10.1158/1538-7445.AM2017-3231

Collaboration


Dive into the Karen L. Huss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge