Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen M. Davies is active.

Publication


Featured researches published by Karen M. Davies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Macromolecular organization of ATP synthase and complex I in whole mitochondria

Karen M. Davies; Mike Strauss; Bertram Daum; Jan Kief; Heinz D. Osiewacz; Adriana Rycovska; Volker Zickermann; Werner Kühlbrandt

We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly curved cristae edges. The distance between dimers along the rows varied, but within the dimer the distance between F1 heads was constant. The angle between monomers in the dimer was 70° or above. Complex I appeared as L-shaped densities in tomograms of reconstituted proteoliposomes. Similar densities were observed in flat membrane regions of mitochondrial membranes from all species except Saccharomyces cerevisiae and identified as complex I by quantum-dot labeling. The arrangement of respiratory chain proton pumps on flat cristae membranes and ATP synthase dimer rows along cristae edges was conserved in all species investigated. We propose that the supramolecular organization of respiratory chain complexes as proton sources and ATP synthase rows as proton sinks in the mitochondrial cristae ensures optimal conditions for efficient ATP synthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae

Karen M. Davies; Claudio Anselmi; Ilka Wittig; José D. Faraldo-Gómez; Werner Kühlbrandt

We used electron cryotomography of mitochondrial membranes from wild-type and mutant Saccharomyces cerevisiae to investigate the structure and organization of ATP synthase dimers in situ. Subtomogram averaging of the dimers to 3.7 nm resolution revealed a V-shaped structure of twofold symmetry, with an angle of 86° between monomers. The central and peripheral stalks are well resolved. The monomers interact within the membrane at the base of the peripheral stalks. In wild-type mitochondria ATP synthase dimers are found in rows along the highly curved cristae ridges, and appear to be crucial for membrane morphology. Strains deficient in the dimer-specific subunits e and g or the first transmembrane helix of subunit 4 lack both dimers and lamellar cristae. Instead, cristae are either absent or balloon-shaped, with ATP synthase monomers distributed randomly in the membrane. Computer simulations indicate that isolated dimers induce a plastic deformation in the lipid bilayer, which is partially relieved by their side-by-side association. We propose that the assembly of ATP synthase dimer rows is driven by the reduction in the membrane elastic energy, rather than by direct protein contacts, and that the dimer rows enable the formation of highly curved ridges in mitochondrial cristae.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid

Christian Kukat; Karen M. Davies; Christian A. Wurm; Henrik Spåhr; Nina A. Bonekamp; Inge Kühl; Friederike Joos; Paola Loguercio Polosa; Chan Bae Park; Viktor Posse; Maria Falkenberg; Stefan Jakobs; Werner Kühlbrandt; Nils-Göran Larsson

Significance Altered expression of mitochondrial DNA (mtDNA) is heavily implicated in human disease and aging, but the basic organizational unit of mtDNA, the mitochondrial nucleoid, is poorly understood. Here, we have used a combination of biochemistry, superresolution microscopy, and electron microscopy to show that mammalian mitochondrial nucleoids have an irregular ellipsoidal shape and typically contain a single copy of mtDNA. Furthermore, we show that the nucleoid ultrastructure is independent of cellular mtDNA copy number and that the core nucleoid structure is formed by cross-strand binding of mitochondrial transcription factor A (TFAM) to a single copy of mtDNA. The clarification of the ultrastructure of the mammalian mitochondrial nucleoid provides the fundamental basis for the understanding of regulation of mtDNA maintenance and expression in mammals. Mammalian mitochondrial DNA (mtDNA) is packaged by mitochondrial transcription factor A (TFAM) into mitochondrial nucleoids that are of key importance in controlling the transmission and expression of mtDNA. Nucleoid ultrastructure is poorly defined, and therefore we used a combination of biochemistry, superresolution microscopy, and electron microscopy to show that mitochondrial nucleoids have an irregular ellipsoidal shape and typically contain a single copy of mtDNA. Rotary shadowing electron microscopy revealed that nucleoid formation in vitro is a multistep process initiated by TFAM aggregation and cross-strand binding. Superresolution microscopy of cultivated cells showed that increased mtDNA copy number increases nucleoid numbers without altering their sizes. Electron cryo-tomography visualized nucleoids at high resolution in isolated mammalian mitochondria and confirmed the sizes observed by superresolution microscopy of cell lines. We conclude that the fundamental organizational unit of the mitochondrial nucleoid is a single copy of mtDNA compacted by TFAM, and we suggest a packaging mechanism.


Cell Metabolism | 2015

Central role of mic10 in the mitochondrial contact site and cristae organizing system

Maria Bohnert; Ralf M. Zerbes; Karen M. Davies; Alexander W. Mühleip; Heike Rampelt; Susanne E. Horvath; Thorina Boenke; Anita M. Kram; Inge Perschil; Marten Veenhuis; Werner Kühlbrandt; Ida J. van der Klei; Nikolaus Pfanner; Martin van der Laan

The mitochondrial contact site and cristae organizing system (MICOS) is a conserved multi-subunit complex crucial for maintaining the characteristic architecture of mitochondria. Studies with deletion mutants identified Mic10 and Mic60 as core subunits of MICOS. Mic60 has been studied in detail; however, topogenesis and function of Mic10 are unknown. We report that targeting of Mic10 to the mitochondrial inner membrane requires a positively charged internal loop, but no cleavable presequence. Both transmembrane segments of Mic10 carry a characteristic four-glycine motif, which has been found in the ring-forming rotor subunit of F1Fo-ATP synthases. Overexpression of Mic10 profoundly alters the architecture of the inner membrane independently of other MICOS components. The four-glycine motifs are dispensable for interaction of Mic10 with other MICOS subunits but are crucial for the formation of large Mic10 oligomers. Our studies identify a unique role of Mic10 oligomers in promoting the formation of inner membrane crista junctions.


eLife | 2015

Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals

Chimari Jiko; Karen M. Davies; Kyoko Shinzawa-Itoh; Kazutoshi Tani; Shintaro Maeda; Deryck J. Mills; Tomitake Tsukihara; Yoshinori Fujiyoshi; Werner Kühlbrandt; Christoph Gerle

We have used a combination of electron cryo-tomography, subtomogram averaging, and electron crystallographic image processing to analyse the structure of intact bovine F1Fo ATP synthase in 2D membrane crystals. ATPase assays and mass spectrometry analysis of the 2D crystals confirmed that the enzyme complex was complete and active. The structure of the matrix-exposed region was determined at 24 Å resolution by subtomogram averaging and repositioned into the tomographic volume to reveal the crystal packing. F1Fo ATP synthase complexes are inclined by 16° relative to the crystal plane, resulting in a zigzag topology of the membrane and indicating that monomeric bovine heart F1Fo ATP synthase by itself is sufficient to deform lipid bilayers. This local membrane curvature is likely to be instrumental in the formation of ATP synthase dimers and dimer rows, and thus for the shaping of mitochondrial cristae. DOI: http://dx.doi.org/10.7554/eLife.06119.001


Trends in Biochemical Sciences | 2016

Rotary ATPases: A New Twist to an Ancient Machine

Werner Kühlbrandt; Karen M. Davies

Rotary ATPases are energy-converting nanomachines found in the membranes of all living organisms. The mechanism by which proton translocation through the membrane drives ATP synthesis, or how ATP hydrolysis generates a transmembrane proton gradient, has been unresolved for decades because the structure of a critical subunit in the membrane was unknown. Electron cryomicroscopy (cryoEM) studies of two rotary ATPases have now revealed a hairpin of long, horizontal, membrane-intrinsic α-helices in the a-subunit next to the c-ring rotor. The horizontal helices create a pair of aqueous half-channels in the membrane that provide access to the proton-binding sites in the rotor ring. These recent findings help to explain the highly conserved mechanism of ion translocation by rotary ATPases.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria

Alexander W. Mühleip; Friederike Joos; Christoph Wigge; Achilleas S. Frangakis; Werner Kühlbrandt; Karen M. Davies

Significance The structure of mitochondrial cristae in different species and tissues is highly variable. The molecular basis of these variations and their effect on mitochondrial function is not understood. Dimers of ATP synthase, the essential membrane protein complex that produces most of the ATP in the cell, are thought to shape lamellar cristae, for example in humans or yeasts. Here, we present the ATP synthase dimer structure from the ciliate Paramecium tetraurelia, which assembles into helical arrays around the outer perimeter of twisted tubular cristae. The similarities between the morphology of the helical arrays and the tubular cristae indicate that ATP synthase dimers are responsible for shaping the cristae of mitochondria. F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology.


Proceedings of the National Academy of Sciences of the United States of America | 2017

In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits

Alexander W. Mühleip; Caroline E. Dewar; Achim Schnaufer; Werner Kühlbrandt; Karen M. Davies

Significance The mitochondrial F1Fo ATP synthase is an essential membrane protein machine that supplies all eukaryotic cells with ATP. The proton-driven rotation of the rotor assembly in the membrane transmits energy to the catalytic F1 head, where ATP is generated by rotary catalysis. We determined the in situ structures of ATP synthase dimers from the lethal human parasite Trypanosoma brucei and its free-living relative Euglena gracilis. In both ATP synthases, the catalytic subunits form a threefold pyramid rather than the usual near-sixfold ring. This unexpected finding indicates that the structure of the F1 head, and therefore its catalytic action, is less highly conserved than previously thought, and provides insight into the fundamental mechanism of ATP production in higher organisms. We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 Å and 27.5 Å, respectively, the two structures clearly exhibit a noncanonical F1 head, in which the catalytic (αβ)3 assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum-specific cleavage of the α subunit, in which the C-terminal αC fragments are displaced by ∼20 Å and rotated by ∼30° from their expected positions. In this location, the αC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert γ-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the α and β subunits to the fundamental process of ATP synthesis.


Angewandte Chemie | 2012

GRecon: a method for the lipid reconstitution of membrane proteins.

Thorsten Althoff; Karen M. Davies; Sabrina Schulze; Friederike Joos; Werner Kühlbrandt

Membrane proteins account for about 20–30 % of the protein-encoding genes in the genomes of all living organisms.2 Their fundamental importance in human health and disease is underlined by the fact that many drugs in current use act on them.3 Functional and structural studies of membrane proteins are therefore of increasing importance but more difficult and demanding than studies with soluble proteins, because membrane proteins function in the lipid bilayer of cell membranes. For in vitro studies, the proteins are first extracted from the membrane by detergent solubilization and then purified in detergent solution. Sensitive membrane proteins are often unstable in detergent solution, but quite stable once they are reconstituted into a lipid bilayer. Moreover, many membrane proteins require a lipid environment for activity. The reconstitution process, in which detergent is replaced by lipid, must be carefully controlled, as otherwise the proteins tend to denature and aggregate.4


Biochemical Society Transactions | 2013

Role of cryo-ET in membrane bioenergetics research

Karen M. Davies; Bertram Daum

To truly understand bioenergetic processes such as ATP synthesis, membrane-bound substrate transport or flagellar rotation, systems need to be analysed in a cellular context. Cryo-ET (cryo-electron tomography) is an essential part of this process, as it is currently the only technique which can directly determine the spatial organization of proteins at the level of both the cell and the individual protein complexes. The need to assess bioenergetic processes at a cellular level is becoming more and more apparent with the increasing interest in mitochondrial diseases. In recent years, cryo-ET has contributed significantly to our understanding of the molecular organization of mitochondria and chloroplasts. The present mini-review first describes the technique of cryo-ET and then discusses its role in membrane bioenergetics specifically in chloroplasts and mitochondrial research.

Collaboration


Dive into the Karen M. Davies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Anselmi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilka Wittig

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge