Karen M. Dwyer
Deakin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen M. Dwyer.
Journal of Experimental Medicine | 2007
Silvia Deaglio; Karen M. Dwyer; Wenda Gao; David J. Friedman; Anny Usheva; Anna Erat; Chen J; Keiichii Enjyoji; Joel Linden; Mohamed Oukka; Vijay K. Kuchroo; Terry B. Strom; Simon C. Robson
The study of T regulatory cells (T reg cells) has been limited by the lack of specific surface markers and an inability to define mechanisms of suppression. We show that the expression of CD39/ENTPD1 in concert with CD73/ecto-5′-nucleotidase distinguishes CD4+/CD25+/Foxp3+ T reg cells from other T cells. These ectoenzymes generate pericellular adenosine from extracellular nucleotides. The coordinated expression of CD39/CD73 on T reg cells and the adenosine A2A receptor on activated T effector cells generates immunosuppressive loops, indicating roles in the inhibitory function of T reg cells. Consequently, T reg cells from Cd39-null mice show impaired suppressive properties in vitro and fail to block allograft rejection in vivo. We conclude that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
John Stagg; Upulie Divisekera; Nicole McLaughlin; Janelle Sharkey; Sandra Pommey; Delphine Denoyer; Karen M. Dwyer; Mark J. Smyth
Extracellular adenosine is a potent immunosuppressor that accumulates during tumor growth. We performed proof-of-concept studies investigating the therapeutic potential and mechanism of action of monoclonal antibody (mAb)-based therapy against CD73, an ecto-enzyme overexpressed on breast-cancer cells that catalyzes the dephosphorylation of adenosine monophosphates into adenosine. We showed that anti-CD73 mAb therapy significantly delayed primary 4T1.2 and E0771 tumor growth in immune-competent mice and significantly inhibited the development of spontaneous 4T1.2 lung metastases. Notably, anti-CD73 mAb therapy was essentially dependent on the induction of adaptive anti-tumor immune responses. Knockdown of CD73 in 4T1.2 tumor cells confirmed the tumor-promoting effects of CD73. In addition to its immunosuppressive effect, CD73 enhanced tumor-cell chemotaxis, suggesting a role for CD73-derived adenosine in tumor metastasis. Accordingly, administration of adenosine-5′-N-ethylcarboxamide to tumor-bearing mice significantly enhanced spontaneous 4T1.2 lung metastasis. Using selective adenosine-receptor antagonists, we showed that activation of A2B adenosine receptors promoted 4T1.2 tumor-cell chemotaxis in vitro and metastasis in vivo. In conclusion, our study identified tumor-derived CD73 as a mechanism of tumor immune escape and tumor metastasis, and it also established the proof of concept that targeted therapy against CD73 can trigger adaptive anti-tumor immunity and inhibit metastasis of breast cancer.
Purinergic Signalling | 2007
Karen M. Dwyer; Silvia Deaglio; Wenda Gao; David J. Friedman; Terry B. Strom; Simon C. Robson
CD39 is the cell surface-located prototypic member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family. Biological actions of CD39 are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides. This ecto-enzymatic cascade in tandem with CD73 (ecto-5–nucleotidase) also generates adenosine and has major effects on both P2 and adenosine receptor signalling. Despite the early recognition of CD39 as a B lymphocyte activation marker, little is known of the role of CD39 in humoral or cellular immune responses. There is preliminary evidence to suggest that CD39 may impact upon antibody affinity maturation. Pericellular nucleotide/nucleoside fluxes caused by dendritic cell expressed CD39 are also involved in the recruitment, activation and polarization of naïve T cells. We have recently explored the patterns of CD39 expression and the functional role of this ecto-nucleotidase within quiescent and activated T cell subsets. Our data indicate that CD39, together with CD73, efficiently distinguishes T regulatory cells (Treg) from other resting or activated T cells in mice (and humans). Furthermore, CD39 serves as an integral component of the suppressive machinery of Treg, acting, at least in part, through the modulation of pericellular levels of adenosine. We have also shown that the coordinated regulation of CD39/CD73 expression and of the adenosine receptor A2A activates an immunoinhibitory loop that differentially regulates Th1 and Th2 responses. The in vivo relevance of this network is manifest in the phenotype of Cd39-null mice that spontaneously develop features of autoimmune diseases associated with Th1 immune deviation. These data indicate the potential of CD39 and modulated purinergic signalling in the co-ordination of immunoregulatory functions of dendritic and Treg cells. Our findings also suggest novel therapeutic strategies for immune-mediated diseases.
Journal of Clinical Investigation | 2004
Karen M. Dwyer; Simon C. Robson; Harshal Nandurkar; Duncan J. Campbell; Hilton Gock; Lisa Murray-Segal; Nella Fisicaro; Tharun B. Mysore; Elzbieta Kaczmarek; Peter J. Cowan; Anthony J. F. d'Apice
Extracellular nucleotides play an important role in thrombosis and inflammation, triggering a range of effects such as platelet activation and recruitment, endothelial cell activation, and vasoconstriction. CD39, the major vascular nucleoside triphosphate diphosphohydrolase (NTPDase), converts ATP and ADP to AMP, which is further degraded to the antithrombotic and anti-inflammatory mediator adenosine. Deletion of CD39 renders mice exquisitely sensitive to vascular injury, and CD39-null cardiac xenografts show reduced survival. Conversely, upregulation of CD39 by somatic gene transfer or administration of soluble NTPDases has major benefits in models of transplantation and inflammation. In this study we examined the consequences of transgenic expression of human CD39 (hCD39) in mice. Importantly, these mice displayed no overt spontaneous bleeding tendency under normal circumstances. The hCD39 transgenic mice did, however, exhibit impaired platelet aggregation, prolonged bleeding times, and resistance to systemic thromboembolism. Donor hearts transgenic for hCD39 were substantially protected from thrombosis and survived longer in a mouse cardiac transplant model of vascular rejection. These thromboregulatory manifestations in hCD39 transgenic mice suggest important therapeutic potential in clinical vascular disease and in the control of serious thrombotic events that compromise the survival of porcine xenografts in primates.
American Journal of Transplantation | 2010
Karen M. Dwyer; Dusan Hanidziar; Prabhakar Putheti; Prue Hill; Sandra Pommey; Jennifer L. McRae; Adam C Winterhalter; Glen A. Doherty; Silvia Deaglio; Maria Koulmanda; Wenda Gao; Simon C. Robson; Terry B. Strom
We have shown that CD39 and CD73 are coexpressed on the surface of murine CD4+Foxp3+ regulatory T cells (Treg) and generate extracellular adenosine, contributing to Treg immunosuppressive activity. We now describe that CD39, independently of CD73, is expressed by a subset of blood‐derived human CD4+CD25+CD127lo Treg, defined by robust expression of Foxp3. A further distinct population of CD4+CD39+ T lymphocytes can be identified, which do not express CD25 and FoxP3 and exhibit the memory effector cellular phenotype. Differential expression of CD25 and CD39 on circulating CD4+ T cells distinguishes between Treg and pathogenic cellular populations that secrete proinflammatory cytokines such as IFNγ and IL‐17. These latter cell populations are increased, with a concomitant decrease in the CD4+CD25+CD39+ Tregs, in the peripheral blood of patients with renal allograft rejection. We conclude that the ectonucleotidase CD39 is a useful and dynamic lymphocytes surface marker that can be used to identify different peripheral blood T cell‐populations to allow tracking of these in health and disease, as in renal allograft rejection.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Paul A. Beavis; Upulie Divisekera; Christophe Paget; Melvyn T. Chow; Liza B. John; Christel Devaud; Karen M. Dwyer; John Stagg; Mark J. Smyth; Phillip K. Darcy
CD73 inhibits antitumor immunity through the activation of adenosine receptors expressed on multiple immune subsets. CD73 also enhances tumor metastasis, although the nature of the immune subsets and adenosine receptor subtypes involved in this process are largely unknown. In this study, we revealed that A2A/A2B receptor antagonists were effective in reducing the metastasis of tumors expressing CD73 endogenously (4T1.2 breast tumors) and when CD73 was ectopically expressed (B16F10 melanoma). A2A−/− mice were strongly protected against tumor metastasis, indicating that host A2A receptors enhanced tumor metastasis. A2A blockade enhanced natural killer (NK) cell maturation and cytotoxic function in vitro, reduced metastasis in a perforin-dependent manner, and enhanced NK cell expression of granzyme B in vivo, strongly suggesting that the antimetastatic effect of A2A blockade was due to enhanced NK cell function. Interestingly, A2B blockade had no effect on NK cell cytotoxicity, indicating that an NK cell-independent mechanism also contributed to the increased metastasis of CD73+ tumors. Our results thus revealed that CD73 promotes tumor metastasis through multiple mechanisms, including suppression of NK cell function. Furthermore, our data strongly suggest that A2A or A2B antagonists may be useful for the treatment of metastatic disease. Overall, our study has potential therapeutic implications given that A2A/A2B receptor antagonists have already entered clinical trials in other therapeutic settings.
British Journal of Pharmacology | 2009
Michail Sitkovsky; D Lukashev; Silvia Deaglio; Karen M. Dwyer; Simon C. Robson; Akiko Ohta
The intensity and duration of host responses are determined by protective mechanisms that control tissue injury by dampening down inflammation. Adenosine generation and consequent effects, mediated via A2A adenosine receptors (A2AR) on effector cells, play a critical role in the pathophysiological modulation of these responses in vivo. Adenosine is both released by hypoxic cells/tissues and is also generated from extracellular nucleotides by ecto‐enzymes e.g. CD39 (ENTPD1) and CD73 that are expressed by the vasculature and immune cells, in particular by T regulatory cell. In general, these adenosinergic mechanisms minimize the extent of collateral damage to host tissues during the course of inflammatory reactions. However, induction of suppressive pathways might also cause escape of pathogens and permit dissemination. In addition, adenosinergic responses may inhibit immune responses while enhancing vascular angiogenic responses to malignant cells that promote tumor growth. Novel drugs that block A2AR‐adenosinergic effects and/or adenosine generation have the potential to boost pathogen destruction and to selectively destroy malignant tissues. In the latter instance, future treatment modalities might include novel ‘anti‐adenosinergic’ approaches that augment immune clearance of malignant cells and block permissive angiogenesis. This review addresses several possible pharmacological modalities to block adenosinergic pathways and speculates on their future application together with impacts on human disease.
American Journal of Transplantation | 2010
Sandra Crikis; Bo Lu; L. M. Murray-Segal; Carly Selan; Simon C. Robson; Anthony J. F. d'Apice; Harshal Nandurkar; Peter J. Cowan; Karen M. Dwyer
The vascular ectonucleotidases CD39[ENTPD1 (ectonucleoside triphosphate diphosphohydrolase‐1), EC 3.6.1.5] and CD73[EC 3.1.3.5] generate adenosine from extracellular nucleotides. CD39 activity is critical in determining the response to ischemia‐reperfusion injury (IRI), and CD39 null mice exhibit heightened sensitivity to renal IRI. Adenosine has multiple mechanisms of action in the vasculature including direct endothelial protection, antiinflammatory and antithrombotic effects and is protective in several models of IRI. Mice transgenic for human CD39 (hCD39) have increased capacity to generate adenosine. We therefore hypothesized that hCD39 transgenic mice would be protected from renal IRI. The overexpression of hCD39 conferred protection in a model of warm renal IRI, with reduced histological injury, less apoptosis and preserved serum creatinine and urea levels. Benefit was abrogated by pretreatment with an adenosine A2A receptor antagonist. Adoptive transfer experiments showed that expression of hCD39 on either the vasculature or circulating cells mitigated IRI. Furthermore, hCD39 transgenic kidneys transplanted into syngeneic recipients after prolonged cold storage performed significantly better and exhibited less histological injury than wild‐type control grafts. Thus, systemic or local strategies to promote adenosine generation and signaling may have beneficial effects on warm and cold renal IRI, with implications for therapeutic application in clinical renal transplantation.
American Journal of Transplantation | 2002
Peter J. Cowan; Atousa Aminian; Helen Barlow; A. A. Brown; Karen M. Dwyer; Robin Filshie; Nella Fisicaro; David M. A. Francis; H. Gock; David J. Goodman; J. Katsoulis; Simon C. Robson; Evelyn Salvaris; Trixie A. Shinkel; A. B. Stewart; Anthony J. F. d'Apice
Delayed rejection of pig kidney xenografts by primates is associated with vascular injury that may be accompanied by a form of consumptive coagulopathy in recipients. Using a life‐supporting pig‐to‐baboon renal xenotransplantation model, we have tested the hypothesis that treatment with recombinant human antithrombin III would prevent or at least delay the onset of rejection and coagulopathy. Non‐immunosuppressed baboons were transplanted with transgenic pig kidneys expressing the human complement regulators CD55 and CD59. Recipients were treated with an intravenous infusion of antithrombin III eight hourly (250 units per kg body weight), with or without low molecular weight heparin. Antithrombin‐treated recipients had preservation of normal renal function for 4–5 days, which was twice as long as untreated animals, and developed neither thrombocytopenia nor significant coagulopathy during this period. Thus, recombinant antithrombin III may be a useful therapeutic agent to ameliorate both early graft damage and the development of systemic coagulation disorders in pig‐to‐human xenotransplantation.
Biochemical Journal | 2006
Yan Wu; Xiaofeng Sun; Elzbieta Kaczmarek; Karen M. Dwyer; Elisabetta Bianchi; Anny Usheva; Simon C. Robson
CD39/ecto-NTPDase 1 (nucleoside triphosphate diphosphohydrolase 1) is an ecto-nucleotidase that influences P2 receptor activation to regulate vascular and immune cell adhesion and signalling events pivotal in inflammation. Whether CD39 interacts with other membrane or cytoplasmic proteins has not been established to date. Using the yeast two-hybrid system, we note that the N-terminus of CD39 binds to RanBPM (Ran binding protein M; also known as RanBP9), a multi-adaptor scaffolding membrane protein originally characterized as a binding protein for the small GTPase Ran. We confirm formation of complexes between CD39 and RanBPM in transfected mammalian cells by co-immunoprecipitation studies. Endogenous CD39 and RanBPM are also found to be co-expressed and abundant in cell membranes of B-lymphocytes. NTPDase activity of recombinant CD39, but not of N-terminus-deleted-CD39 mutant, is substantially diminished by RanBPM co-expression in COS-7 cells. The conserved SPRY [repeats in splA and RyR (ryanodine receptor)] moiety of RanBPM is insufficient alone for complete physical and functional interactions with CD39. We conclude that CD39 associations with RanBPM have the potential to regulate NTPDase catalytic activity. This intermolecular interaction may have important implications for the regulation of extracellular nucleotide-mediated signalling.