Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen M. Harmon is active.

Publication


Featured researches published by Karen M. Harmon.


Journal of Clinical Microbiology | 2014

Isolation and Characterization of Porcine Epidemic Diarrhea Viruses Associated with the 2013 Disease Outbreak among Swine in the United States

Qi Chen; Ganwu Li; Judith Stasko; Joseph T. Thomas; Wendy R. Stensland; Angela E. Pillatzki; Phillip C. Gauger; Kent J. Schwartz; Darin M. Madson; Kyoung-Jin Yoon; Gregory W. Stevenson; Eric R. Burrough; Karen M. Harmon; Rodger G. Main; Jianqiang Zhang

ABSTRACT Porcine epidemic diarrhea virus (PEDV) was detected in May 2013 for the first time in U.S. swine and has since caused significant economic loss. Obtaining a U.S. PEDV isolate that can grow efficiently in cell culture is critical for investigating pathogenesis and developing diagnostic assays and for vaccine development. An additional objective was to determine which gene(s) of PEDV is most suitable for studying the genetic relatedness of the virus. Here we describe two PEDV isolates (ISU13-19338E and ISU13-22038) successfully obtained from the small intestines of piglets from sow farms in Indiana and Iowa, respectively. The two isolates have been serially propagated in cell culture for over 30 passages and were characterized for the first 10 passages. Virus production in cell culture was confirmed by PEDV-specific real-time reverse-transcription PCR (RT-PCR), immunofluorescence assays, and electron microscopy. The infectious titers of the viruses during the first 10 passages ranged from 6 × 102 to 2 × 105 50% tissue culture infective doses (TCID50)/ml. In addition, the full-length genome sequences of six viruses (ISU13-19338E homogenate, P3, and P9; ISU13-22038 homogenate, P3, and P9) were determined. Genetically, the two PEDV isolates were relatively stable during the first 10 passages in cell culture. Sequences were also compared to those of 4 additional U.S. PEDV strains and 23 non-U.S. strains. All U.S. PEDV strains were genetically closely related to each other (≥99.7% nucleotide identity) and were most genetically similar to Chinese strains reported in 2011 to 2012. Phylogenetic analyses using different genes of PEDV suggested that the full-length spike gene or the S1 portion is appropriate for sequencing to study the genetic relatedness of these viruses.


Journal of Virology | 2002

Comparison of Molecular and Biological Characteristics of a Modified Live Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccine (Ingelvac PRRS MLV), the Parent Strain of the Vaccine (ATCC VR2332), ATCC VR2385, and Two Recent Field Isolates of PRRSV

Tanja Opriessnig; Patrick G. Halbur; Kyoung Jin Yoon; R. M. Pogranichniy; Karen M. Harmon; Rich Evans; K. F. Key; F. J. Pallares; P. Thomas; Xiang-Jin Meng

ABSTRACT The objectives of this study were to compare the molecular and biological characteristics of recent porcine reproductive and respiratory syndrome virus (PRRSV) field isolates to those of a modified live virus (MLV) PRRS vaccine and its parent strain. One hundred seventeen, 4-week-old pigs were randomly assigned to six groups. Group 1 (n = 20) served as sham-inoculated negative controls, group 2 (n = 19) was inoculated with Ingelvac PRRS MLV vaccine, group 3 (n = 20) was inoculated with the parent strain of the vaccine (ATCC VR2332), group 4 (n = 19) was inoculated with vaccine-like PRRSV field isolate 98-38803, group 5 (n = 19) was inoculated with PRRSV field isolate 98-37120, and group 6 (n = 20) was inoculated with known high-virulence PRRSV isolate ATCC VR2385. The levels of severity of gross lung lesions (0 to 100%) among the groups were significantly different at both 10 (P < 0.0001) and 28 days postinoculation (p.i.) (P = 0.002). At 10 days p.i., VR2332 (26.5% ± 4.64%) and VR2385 (36.4% ± 6.51%) induced gross lesions of significantly greater severity than 98-38803 (0.0% ± 0.0%), 98-37120 (0.8% ± 0.42%), Ingelvac PRRS MLV (0.9% ± 0.46%), and negative controls (2.3% ± 1.26%). At 28 days p.i., 98-37120 (17.2% ± 6.51%) induced gross lesions of significantly greater severity than any of the other viruses. Analyses of the microscopic-interstitial-pneumonia-lesion scores (0 to 6) revealed that VR2332 (2.9 ± 0.23) and VR2385 (3.1 ± 0.35) induced significantly more severe lesions at 10 days p.i. At 28 days p.i., VR2385 (2.5 ± 0.27), VR2332 (2.3 ± 0.21), 98-38803 (2.6 ± 0.29), and 98-37120 (3.0 ± 0.41) induced significantly more severe lesions than Ingelvac PRRS MLV (0.7 ± 0.17) and controls (0.7 ± 0.15). The molecular analyses and biological characterizations suggest that the vaccine-like isolate 98-38803 (99.5% amino acid homology based on the ORF5 gene) induces microscopic pneumonia lesions similar in type to, but different in severity and time of onset from, those observed with virulent strains VR2385 and the parent strain of the vaccine. Our data strongly suggest that isolate 98-38803 is a derivative of Ingelvac PRRS MLV and that the isolate is pneumovirulent.


Journal of Virology | 2002

Evolution of Porcine Reproductive and Respiratory Syndrome Virus during Sequential Passages in Pigs

Chih-Cheng Chang; Kyoung-Jin Yoon; Jeffrey J. Zimmerman; Karen M. Harmon; Philip M. Dixon; Cheryl M.T. Dvorak; Michael P. Murtaugh

ABSTRACT Porcine reproductive and respiratory syndrome (PRRS) viruses are recognized as possessing a high degree of genetic and antigenic variability. Viral diversity has led to questions regarding the association of virus mutation and persistent infection in the host and has raised concerns vis-à-vis protective immunity, the ability of diagnostic assays to detect novel variants, and the possible emergence of virulent strains. The purpose of this study was to describe ongoing changes in PRRS virus during replication in pigs under experimental conditions. Animals were inoculated with a plaque-cloned virus derived from VR-2332, the North American PRRS virus prototype. Three independent lines of in vivo replication were maintained for 367 days by pig-to-pig passage of virus at 60-day intervals. A total of 315 plaque-cloned viruses were recovered from 21 pigs over the 367-day observation period and compared to the original plaque-cloned virus by virus neutralization assay, monoclonal antibody analysis, and sequencing of open reading frames (ORFs) 1b (replicase), 5 (major envelope protein), and 7 (nucleocapsid) of the genome. Variants were detected by day 7 postinoculation, and multiple variants were present concurrently in every pig sampled over the observation period. Sequence analysis showed ORFs 1b and 7 to be highly conserved. In contrast, sequencing of ORF 5 disclosed 48 nucleotide variants which corresponded to 22 amino acid variants. Although no epitopic changes were detected under the conditions of this experiment, PRRS virus was shown to evolve continuously in infected pigs, with different genes of the viral genome undergoing various degrees of change.


Veterinary Microbiology | 2014

Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs

Darin M. Madson; Drew R. Magstadt; Paulo Arruda; Hai Hoang; Dong Sun; Leslie Bower; M. Bhandari; Eric R. Burrough; P. C. Gauger; Angela E. Pillatzki; Gregory W. Stevenson; B.L. Wilberts; J. Brodie; Karen M. Harmon; Chong Wang; Rodger G. Main; Jianqiang Zhang; Kyoung Jin Yoon

Porcine epidemic diarrhea virus (PEDV) is associated with clinical diarrhea in naïve swine of all ages. This report describes timing of antibody generation and disease progression following infection with a US PEDV isolate by assessing fecal viral shedding, morphometric analysis of intestinal lesions, and magnitude of immunohistochemical staining. Sixty-three, 3-week-old pigs were randomly allocated into control (n=27) and challenged (n=36) groups. Challenged pigs were administered 1 mL of 1 × 10(3) PFU/mL of US/Iowa/18984/2013 PEDV isolate by oro-gastric gavage. Three control and four challenged pigs were necropsied on days post-inoculation (dpi) 1, 2, 3, 4, 7, and weekly thereafter, until study termination on dpi 35. Clinical disease, fecal shedding, body weight, and temperature were monitored during the study period. Diarrhea was observed in challenged pigs beginning for some on dpi 2, affecting a majority of pigs by dpi 6 and subsiding by dpi 10. Average daily gain was significantly lower (P<0.001) for one week post-infection in challenged pigs. PEDV was detected in feces by PCR on dpi 1 and continued in a subset of pigs until dpi 24. PEDV-specific antigen was detected in villous enterocytes of challenged pigs by immunohistochemistry (IHC) on dpi 1, 2, 3, 4, 7, and 14. Microscopic lesions included severe diffuse atrophic enteritis with significantly reduced (P<0.001) villous length observed on dpi 3, 4, and 7. Under the conditions of this study, fecal shedding of PEDV and IHC staining can precede and continue beyond the observation of clinical signs, thus increasing the risk of viral transmission.


Emerging Infectious Diseases | 2014

Role of transportation in spread of porcine epidemic diarrhea virus infection, United States.

James Lowe; Phillip C. Gauger; Karen M. Harmon; Jianqiang Zhang; J. Connor; Paul Yeske; Timothy Loula; Ian Levis; Luc Dufresne; Rodger G. Main

After porcine epidemic diarrhea virus (PEDV) was detected in the United States in 2013, we tested environmental samples from trailers in which pigs had been transported. PEDV was found in 5.2% of trailers not contaminated at arrival, , suggesting that the transport process is a source of transmission if adequate hygiene measures are not implemented.


Genome Announcements | 2014

Full-Length Genome Sequence of Porcine Deltacoronavirus Strain USA/IA/2014/8734

Ganwu Li; Qi Chen; Karen M. Harmon; Kyoung-Jin Yoon; Kent J. Schwartz; Marlin Hoogland; Phillip C. Gauger; Rodger G. Main; Jianqiang Zhang

ABSTRACT Porcine deltacoronavirus (PDCoV) was detected in feces from diarrheic sows during an epidemic of acute and transmissible diarrhea. No transmissible gastroenteritis virus or porcine epidemic diarrhea virus was detected. The PDCoV USA/IA/2014/8734 from the herd was sequenced for full-length genomic RNA to further characterize PDCoV in U.S. swine.


PLOS ONE | 2015

Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naïve conventional neonatal and weaned pigs

Joseph T. Thomas; Qi Chen; Phillip C. Gauger; Luis G. Giménez-Lirola; Avanti Sinha; Karen M. Harmon; Darin M. Madson; Eric R. Burrough; Drew R. Magstadt; Holly M. Salzbrenner; Michael Welch; Kyoung-Jin Yoon; Jeffrey J. Zimmerman; Jianqiang Zhang

Porcine epidemic diarrhea virus (PEDV) was identified in the United States (U.S.) swine population for the first time in April 2013 and rapidly spread nationwide. However, no information has been published regarding the minimum infectious dose (MID) of PEDV in different pig models. The main objective of this study was to determine the oral minimum infectious dose of PEDV in naïve conventional neonatal piglets and weaned pigs. A U.S. virulent PEDV prototype isolate (USA/IN19338/2013) with known infectious titer was serially ten-fold diluted in virus-negative cell culture medium. Dilutions with theoretical infectious titers from 560 to 0.0056 TCID50/ml together with a medium control were orogastrically inoculated (10ml/pig) into 7 groups of 5-day-old neonatal pigs (n = 4 per group) and 7 groups of 21-day-old weaned pigs (n = 6 per group). In 5-day-old pigs, 10ml of inoculum having titers 560–0.056 TCID50/ml, corresponding to polymerase chain reaction (PCR) cycle threshold (Ct) values 24.2–37.6, resulted in 100% infection in each group; 10ml of inoculum with titer 0.0056 TCID50/ml (Ct>45) caused infection in 25% of the inoculated pigs. In 21-day-old pigs, 10ml of inoculum with titers 560–5.6 TCID50/ml (Ct 24.2–31.4) resulted in 100% infection in each group while 10ml of inoculum with titers 0.56–0.0056 TCID50/ml (Ct values 35.3 –>45) did not establish infection in any pigs under study conditions as determined by clinical signs, PCR, histopathology, immunohistochemistry, and antibody response. These data reveal that PEDV infectious dose is age-dependent with a significantly lower MID for neonatal pigs compared to weaned pigs. This information should be taken into consideration when interpreting clinical relevance of PEDV PCR results and when designing a PEDV bioassay model. The observation of such a low MID in neonates also emphasizes the importance of strict biosecurity and thorough cleaning/disinfection on sow farms.


Archives of Virology | 1999

Antigenic and genetic variations of the 15 kD nucleocapsid protein of porcine reproductive and respiratory syndrome virus isolates

L. Yang; Kyoung-Jin Yoon; Y. Li; J.-H. Lee; Jeffrey J. Zimmerman; M. L. Frey; Karen M. Harmon; Kenneth B. Platt

SummaryThe antigenic variability of the 15 kD nucleocapsid protein of porcine reproductive and respiratory syndrome (PRRS) virus was characterized with a panel of 24 monoclonal antibodies (MAbs) raised against the American PRRS virus isolate ISU-P. Five continuous epitopes designated EpORF7-A through E were revealed by the reactivity pattern of these MAbs with 67 American field isolates, two modified-live vaccine viruses, and the European Lelystad virus as determined by the indirect immnofluorescence assay and Western immunoblotting and confirmed by additivity and blocking enzyme-linked immunosorbent assays. The reactivity pattern of isolates in the IFA permitted their subdivision into 4 American antigenic groups which represented 84.1, 11.6, 2.9 and 1.4% of viruses tested. The antigenic variation among isolates was correlated to single, group specific nucleotide substitutions and mediated by a combination of at least 4 of the 5 epitopes. EpORF7-A was conserved in all American isolates and the Lelystad virus which constituted a separate antigenic group. Consequently, monoclonal antibodies specific for EpORF7-A may prove useful as the antigenic basis for a universal diagnostic test for the PRRS virus. EpORF7-C, D and E were only present in the American isolates tested.


Journal of Veterinary Diagnostic Investigation | 2011

Comparison of RNA Extraction and Real-Time Reverse Transcription Polymerase Chain Reaction Methods for the Detection of Porcine Reproductive and Respiratory Syndrome Virus in Porcine Oral Fluid Specimens

Wayne Chittick; Wendy R. Stensland; John R. Prickett; Erin Strait; Karen M. Harmon; Kyoung-Jin Yoon; Chong Wang; Jeffrey J. Zimmerman

The objective of the current study was to evaluate various RNA extraction and polymerase chain reaction (PCR) protocols for the detection of Porcine reproductive and respiratory syndrome virus (PRRSV) in porcine oral fluids. Extraction protocols were selected based on ease of use and compatibility with high-throughput, automated systems. The results showed marked differences among extraction protocols, PCR protocols, and combinations thereof in detecting PRRSV in the oral fluid matrix. An important finding was that PCR reactions were partially inhibited by unknown factors in the oral fluid matrix and that inhibition was reduced by use of a higher concentration of PCR enzymes. The results suggest that further optimization of PCR assays for porcine oral fluids is needed and that laboratories should not assume that methods optimized for detection of virus in serum will perform equally with porcine oral fluids.


Journal of Food Protection | 2002

Application of a Multiplex Polymerase Chain Reaction Assay for the Simultaneous Confirmation of Listeria monocytogenes and Other Listeria Species in Turkey Sample Surveillance

Irene V. Wesley; Karen M. Harmon; James S. Dickson; Ann Ramos Schwartz

A multiplex polymerase chain reaction was developed to simultaneously identify Listeria monocytogenes and species of the genus Listeria. Two sets of primers were used, with the first amplifying a 938-bp region of the 16S rRNA gene that is highly conserved in all Listeria species and the second amplifying a 174-bp region of the listeriolysin (hlyA) gene of L. monocytogenes. Thus, isolates of Listeria spp. yield a single 938-bp product, whereas L. monocytogenes isolates yield both the 938-bp product and a 174-bp product. The specificity of the assay was verified with all six Listeria species and 11 serotypes of L. monocytogenes, as well as nonrelated bacteria. The multiplex PCR assay was used to determine the incidence of Listeria spp., especially L. monocytogenes, in mechanically separated turkey samples (n = 150 samples). L. monocytogenes strains were selected by using the University of Vermont two-step enrichment protocol and plating to selective Palcam agar. The multiplex PCR assay was used for verification of presumptive Listeria colonies. Approximately 38% of mechanically separated turkey samples (57 of 150) yielded L. monocytogenes; an additional 18% of these samples (27 of 150) harbored other Listeria spp. Fifty-one percent (29 of 57) of the L. monocytogenes isolates were of serogroup 1, 44% (25 of 57) were of serogroup 4, and 2% (1 of 57) were assigned to serogroups other than 1 and 4.

Collaboration


Dive into the Karen M. Harmon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Chen

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Ganwu Li

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge