Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen M. Henkels is active.

Publication


Featured researches published by Karen M. Henkels.


Oncogene | 2013

Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model

Karen M. Henkels; Gregory P. Boivin; Emily S. Dudley; Steven J. Berberich; Julian Gomez-Cambronero

Breast cancer is one of the most common malignancies in human females in the world. One protein that has elevated enzymatic lipase activity in breast cancers in vitro is phospholipase D (PLD), which is also involved in cell migration. We demonstrate that the PLD2 isoform, which was analyzed directly in the tumors, is crucial for cell invasion that contributes critically to the growth and development of breast tumors and lung metastases in vivo. We used three complementary strategies in a SCID mouse model and also addressed the underlying molecular mechanism. First, the PLD2 gene was silenced in highly metastatic, aggressive breast cancer cells (MDA-MB-231) with lentivirus-based short hairpin RNA, which were xenotransplanted in SCID mice. The resulting mouse primary mammary tumors were reduced in size (65%, P<0.05) and their onset delayed when compared with control tumors. Second, we stably overexpressed PLD2 in low-invasive breast cancer cells (MCF-7) with a biscistronic MIEG retroviral vector and observed that these cells were converted into a highly aggressive phenotype, as primary tumors that formed following xenotransplantation were larger, grew faster and developed lung metastases more readily. Third, we implanted osmotic pumps into SCID xenotransplanted mice that delivered two different small-molecule inhibitors of PLD activity (5-fluoro-2-indolyl des-chlorohalopemide and N-[2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4,5]dec-8-yl)ethyl]-2-naphthalenecarboxamide). These inhibitors led to significant (>70%, P<0.05) inhibition of primary tumor growth, metastatic axillary tumors and lung metastases. In order to define the underlying mechanism, we determined that the machinery of PLD-induced cell invasion is mediated by phosphatidic acid, Wiscott–Aldrich Syndrome protein, growth receptor-bound protein 2 and Rac2 signaling events that ultimately affect actin polymerization and cell invasion. In summary, this study shows for the first time that PLD2 has a central role in the development, metastasis and level of aggressiveness of breast cancer, raising the possibility that PLD2 could be used as a new therapeutic target.


Journal of Biological Chemistry | 1996

Human Ku autoantigen binds cisplatin-damaged DNA but fails to stimulate human DNA-activated protein kinase.

John J. Turchi; Karen M. Henkels

We have identified a series of proteins based on an affinity for cisplatin-damaged DNA. One protein termed DRP-1 has been purified to homogeneity and was isolated as two distinct complexes. The first complex is a heterodimer of 83- and 68-kDa subunits, while the second complex is a heterotrimer of 350-, 83-, and 68-kDa subunits in a 1:1:1 ratio. The 83- and 68-kDa subunits in each complex are identical. The 83-kDa subunit of DRP-1 was identified as the p80 subunit of Ku autoantigen by N-terminal protein sequence analysis and reactivity with a monoclonal antibody directed against human Ku p80 subunit. The 68-kDa subunit of DRP-1 cross-reacted with monoclonal antisera raised against the Ku autoantigen p70 subunit. The 350-kDa subunit was identified as DNA-PKcs, the catalytic subunit of the human DNA-activated protein kinase, DNA-PK. DRP-1/Ku DNA binding was assessed in mobility shift assays and competition binding assays using cisplatin-damaged DNA. Results indicate that DNA binding was essentially unaffected by cisplatin-DNA adducts in the presence or absence of DNA-PKcs. DNA-PK activity was only stimulated with undamaged DNA, despite the ability of Ku to bind to cisplatin-damaged DNA. The lack of DNA-PK stimulation by cisplatin-damaged DNA correlated with the extent of cisplatin-DNA adduct formation. These results demonstrate that Ku can bind cisplatin-damaged DNA but fails to activate DNA-PK. These results are discussed with respect to the repair of cisplatin-DNA adducts and the role of DNA-PK in coordinating DNA repair processes.


FEBS Letters | 2011

IL‐8‐induced neutrophil chemotaxis is mediated by Janus kinase 3 (JAK3)

Karen M. Henkels; Kathleen Frondorf; M. Elba Gonzalez-Mejia; Andrea L. Doseff; Julian Gomez-Cambronero

Janus kinase 3 (JAK3) is a non‐receptor tyrosine kinase vital to the regulation of T‐cells. We report that JAK3 is a mediator of interleukin‐8 (IL‐8) stimulation of a different class of hematopoietic relevant cells: human neutrophils. IL‐8 induced a time‐ and concentration‐dependent activation of JAK3 activity in neutrophils and differentiated HL‐60 leukemic cells. JAK3 was more robustly activated by IL‐8 than other kinases: p70S6K, mTOR, MAPK or PKC. JAK3 silencing severely inhibited IL‐8‐mediated chemotaxis. Thus, IL‐8 stimulates chemotaxis through a mechanism mediated by JAK3. Further, JAK3 activity and chemotaxis were inhibited by the flavonoid apigenin (4′,5,7‐trihydroxyflavone) at ∼5 nM IC50. These new findings lay the basis for understanding the molecular mechanism of cell migration as it relates to neutrophil‐mediated chronic inflammatory processes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2

Madhu Mahankali; Hong-Juan Peng; Karen M. Henkels; Mary C. Dinauer; Julian Gomez-Cambronero

We have discovered that the enzyme phospholipase D2 (PLD2) binds directly to the small GTPase Rac2, resulting in PLD2 functioning as a guanine nucleotide exchange factor (GEF), because it switches Rac2 from the GDP-bound to the GTP-bound states. This effect is large enough to be meaningful (∼72% decrease for GDP dissociation and 300% increase for GTP association, both with PLD2), it has a half-time of ∼7 min, is enhanced with increasing PLD2 concentrations, and compares favorably with other known GEFs, such as Vav-1. The PLD2-Rac2 protein–protein interaction is sufficient for the GEF function, because it can be demonstrated in vitro with just recombinant proteins without lipid substrates, and a catalytically inactive lipase (PLD2-K758R) has GEF activity. Apart from this function, exogenous phosphatidic acid by itself (300 pM) increases GTP binding and enhances PLD2-K758R–mediated GTP binding (by ∼34%) but not GDP dissociation. Regarding the PLD2-Rac2 protein–protein association, it involves, for PLD2, residues 263–266 within a Cdc42/Rac interactive binding region in the PH domain, as well as the PX domain, and it involves, for Rac2, residue N17 within its Switch-1 region. PLD2s GEF function is demonstrated in living cells, because silencing PLD2 results in reduced Rac2 activity, whereas PLD2-initiated Rac2 activation enhances cell adhesion, chemotaxis, and phagocytosis. There are several known GEFs, but we report that this GEF is harbored in a phospholipase. The benefit to the cell is that PLD2 brings spatially separated molecules together in a membrane environment, ready for fast intracellular signaling and cell function.


Journal of Biological Chemistry | 2010

Phosphatidic Acid Is a Leukocyte Chemoattractant That Acts through S6 Kinase Signaling

Kathleen Frondorf; Karen M. Henkels; Michael A. Frohman; Julian Gomez-Cambronero

Phosphatidic acid (PA) is a pleiotropic lipid second messenger in mammalian cells. We report here that extracellular PA acts as a leukocyte chemoattractant, as membrane-soluble dioleoyl-PA (DOPA) elicits actin polymerization and chemotaxis of human neutrophils and differentiated proleukemic HL-60 cells. We show that the mechanism for this involves the S6 kinase (S6K) signaling enzyme. Chemotaxis was inhibited >90% by the S6K inhibitors rapamycin and bisindolylmaleimide and by S6K1 silencing using double-stranded RNA. However, it was only moderately (∼30%) inhibited by mTOR siRNA, indicating the presence of an mTOR-independent mechanism for S6K. Exogenous PA led to robust time- and dose-dependent increases in S6K enzymatic activity and Thr421/Ser424 phosphorylation, further supporting a PA/S6K connection. We also investigated whether intracellular PA production affects cell migration. Overexpression of phospholipase D2 (PLD2) and, to a lesser extent, PLD1, resulted in elevation of both S6K activity and chemokinesis, whereas PLD silencing was inhibitory. Because the lipase-inactive PLD2 mutants K444R and K758R neither activated S6K nor induced chemotaxis, intracellular PA is needed for this form of cell migration. Lastly, we demonstrated a connection between extracellular and intracellular PA. Using an enhanced green fluorescent protein-derived PA sensor (pEGFP-Spo20PABD), we showed that exogenous PA or PA generated in situ by bacterial (Streptomyces chromofuscus) PLD enters the cell and accumulates in vesicle-like cytoplasmic structures. In summary, we report the discovery of PA as a leukocyte chemoattractant via cell entry and activation of S6K to mediate the cytoskeletal actin polymerization and leukocyte chemotaxis required for the immune function of these cells.


Molecular and Cellular Biology | 2011

A Novel Phospholipase D2-Grb2-WASp Heterotrimer Regulates Leukocyte Phagocytosis in a Two-Step Mechanism

Samuel Kantonen; Nathaniel Hatton; Madhu Mahankali; Karen M. Henkels; Haein Park; Dianne Cox; Julian Gomez-Cambronero

ABSTRACT Phagocytosis is a primary innate response of both macrophages and neutrophils involving the formation of filamentous actin (F-actin)-rich protrusions that are extended around opsonized pathogens to form a phagocytic cup, resulting in their subsequent internalization. The molecular mechanism for this is still not completely understood. We now show for the first time that phospholipase D2 (PLD2) binds to growth factor receptor-bound protein 2 (Grb2) and to the Wiskott-Aldrich syndrome protein (WASp) to form a heterotrimer complex, PLD2-Grb2-WASp, and present the mechanism of interaction. Grb2 binds to the Y169/Y179 residues of PLD2 using its only SH2 domain, and it interacts with the poly-proline region of WASp using its two SH3 domains. The PLD2-Grb2-WASp heterotrimer can be visualized in early phagocytic cups of macrophages ingesting opsonized red blood cells, where it associates with polymerized actin. Cup colocalization and phagocytosis are disrupted with mutants that alter binding at either of the two proteins or by silencing Grb2 with RNA interference (RNAi). WASp association to PLD2-K758R, a lipase-inactive mutant, still occurs, albeit at lower levels, indicating that PLD2 plays a second role in phagocytosis, which is the production of phosphatidic acid (PA) and activation of phosphatidylinositol 5-kinase (PI5K) with subsequent synthesis of phosphatidylinositol 4,5-bisphosphate (PIP2). The latter can be blocked with RNAi, which negates phagocytosis. Lastly, a constitutively “open” active form of WASp (WASp-L270P) brings phagocytosis to its maximum level, which can be mimicked with WASp-WT plus PLD2 or plus PA. Since neither a protein-protein disruption nor lack of PLD activity completely negates cup formation or phagocytosis, we posit a two-step mechanism: PLD2 anchors WASp at the phagocytic cup through Grb2 following protein-protein interactions and also activates it, making key lipids available locally. The heterotrimer PLD2-Grb2-WASp then enables actin nucleation at the phagocytic cup and phagocytosis, which are at the center of the innate immune system function.


Molecular and Cellular Biology | 2010

A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation.

Karen M. Henkels; Hong-Juan Peng; Kathleen Frondorf; Julian Gomez-Cambronero

ABSTRACT We report here that the enzymatic activity of phospholipase D2 (PLD2) is regulated by phosphorylation-dephosphorylation. Phosphatase treatment of PLD2-overexpressing cells showed a biphasic nature of changes in activity that indicated the existence of “activator” and “inhibitory” sites. We identified three kinases capable of phosphorylating PLD2 in vitro—epidermal growth factor receptor (EGFR), JAK3, and Src (with JAK3 reported for the first time in this study)—that phosphorylate an inhibitory, an activator, and an ambivalent (one that can yield either effect) site, respectively. Mass spectrometry analyses indicated the target of each of these kinases as Y296 for EGFR, Y415 for JAK3, and Y511 for Src. The extent to which each site is activated or inhibited depends on the cell type considered. In COS-7, cells that show the highest level of PLD2 activity, the Y415 is a prominent site, and JAK3 compensates the negative modulation by EGFR on Y296. In MCF-7, cells that show the lowest level of PLD2 activity, the converse is the case, with Y296 unable to compensate the positive modulation by Y415. MTLn3, with medium to low levels of lipase activity, show an intermediate pattern of regulation but closer to MCF-7 than to COS-7 cells. The negative effect of EGFR on the two cancer cell lines MTLn3 and MCF-7 is further proven by RNA silencing experiments that yield COS-7 showing lower PLD2 activity, and MTLn3 and MCF-7 cells showing an elevated activity. MCF-7 is a cancer cell line derived from a low-aggressive/invasive form of breast cancer that has relatively low levels of PLD activity. We propose that PLD2 activity is low in the breast cancer cell line MCF-7 because it is kept downregulated by tyrosyl phosphorylation of Y296 by EGFR kinase. Thus, phosphorylation of PLD2-Y296 could be the signal for lowering the level of PLD2 activity in transformed cells with low invasive capabilities.


Journal of Inorganic Biochemistry | 1999

Interactions of mammalian proteins with cisplatin-damaged DNA

John J. Turchi; Karen M. Henkels; Ingrid L. Hermanson; Steve M. Patrick

We have undertaken the systematic isolation and characterization of mammalian proteins which display an affinity for cisplatin-damaged DNA. Fractionation of human cell extracts has led to the identification of two classes of proteins. The first includes proteins that bind duplex DNA in the absence of cisplatin damage and retain their affinity for DNA in the presence of cisplatin-DNA adducts. The DNA-dependent protein kinase (DNA-PK) falls into this class. The inhibition of DNA-PK phosphorylation activity by cisplatin-damaged DNA has led to the hypothesis that cisplatin sensitization of mammalian cells to ionizing radiation may be mediated by DNA-PK. The second class of proteins identified are those which display a high relative affinity for cisplatin-damaged DNA and a low affinity for undamaged duplex DNA. Proteins that fall into this class include high mobility group 1 protein (HMG-1), replication protein A (RPA) and xeroderma pigmentosum group A protein (XPA). Each protein has been isolated and purified in the lab. The interaction of each protein with cisplatin-damaged DNA has been assessed in electrophoretic mobility shift assays. A series of DNA binding experiments suggests that RPA binds duplex DNA via denaturation and subsequent preferential binding to the undamaged DNA strand of the partial duplex. DNA substrates prepared with photo-reactive base analogs on either the damaged or undamaged DNA strand have also been employed to investigate the mechanism and specific protein-DNA interactions that occur as each protein binds to cisplatin-damaged DNA. Results suggest both damage and strand specificity for RPA and XPA binding cisplatin-damaged DNA.


Journal of Biological Chemistry | 2011

Evidence for Two CRIB Domains in Phospholipase D2 (PLD2) That the Enzyme Uses to Specifically Bind to the Small GTPase Rac2

Hong-Juan Peng; Karen M. Henkels; Madhu Mahankali; Mary C. Dinauer; Julian Gomez-Cambronero

Phospholipase D (PLD) and small GTPases are vital to cell signaling. We report that the Rac2 and the PLD2 isoforms exist in the cell as a lipase-GTPase complex that enables the two proteins to elicit their respective functionalities. A strong association between the two molecules was demonstrated by co-immunoprecipitation and was confirmed in living cells by FRET with CFP-Rac2 and YFP-PLD2 fluorescent chimeras. We have identified the amino acids in PLD2 that define a specific binding site to Rac2. This site is composed of two CRIB (Cdc42-and Rac-interactive binding) motifs that we have named “CRIB-1” and “CRIB-2” in and around the PH domain in PLD2. Deletion mutants PLD2-ΔCRIB-1/2 negate co-immunoprecipitation with Rac2 and diminish the FRET signal in living cells. The PLD2-Rac2 association was further confirmed in vitro using affinity-purified recombinant proteins. Binding was saturable with an apparent Kd of 3 nm and was diminished with PLD2-ΔCRIB mutants. Furthermore, PLD2 bound more efficiently to Rac2-GTP than to Rac2-GDP or to a GDP-constitutive Rac2-N17 mutant. Increasing concentrations of recombinant Rac2 in vitro and in vivo during cell adhesion inhibit PLD2. Conversely, Rac2 activity is increased in the presence of PLD2-WT but not in PLD2-ΔCRIB. We propose that in activated cells PLD2 affects Rac2 in an initial positive feedback, but as Rac2-GTP accumulates in the cell, this constitutes a “termination signal” leading to PLD2 inactivation.


Molecular and Cellular Biology | 2011

The Dual Effect of Rac2 on Phospholipase D2 Regulation That Explains both the Onset and Termination of Chemotaxis

Hong-Juan Peng; Karen M. Henkels; Madhu Mahankali; Christophe C. Marchal; Paula A. Bubulya; Mary C. Dinauer; Julian Gomez-Cambronero

ABSTRACT We document a biphasic effect of Rac2 on the activation and inhibition of PLD2. Cells overexpressing Rac2 and PLD2 simultaneously show a robust initial (<10 min) response toward a chemoattractant that is later (>30 min) greatly diminished over PLD2-only controls. The first phase is due to the presence of a Rac2-PLD2 positive-feedback loop. To explain the mechanism for the Rac2-led PLD2 inhibition (the second phase), we used leukocytes from wild-type (WT) and Rac2−/− knockout mice. Rac2−/− cells displayed an enhanced PLD2 (but not PLD1) enzymatic activity, confirming the inhibitory role of Rac2. Late inhibitory responses on PLD2 due to Rac2 were reversed in the presence of phosphatidylinositol 4,5-bisphosphate (PIP2) both in vitro (purified GST-PH-PLD2, where GST is glutathione S-transferase and PH is pleckstrin homology) and in vivo. Coimmunoprecipitation and immunofluorescence microscopy indicated that PLD2 and Rac2 remain together. The presence of an “arc” of Rac2 at the leading edge of leukocyte pseudopodia and PLD2 physically posterior to this wave of Rac2 was observed in late chemotaxis. We propose Rac-led inhibition of PLD2 function is due to sterical interference of Rac with PLD2s PH binding site to the membrane and deprivation of the PIP2. This work supports the importance of functional interactions between PLD and Rac in the biological response of cell migration.

Collaboration


Dive into the Karen M. Henkels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary C. Dinauer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge