Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Methling is active.

Publication


Featured researches published by Karen Methling.


Proteomics | 2011

The peroxide stress response of Bacillus licheniformis

Rebecca Schroeter; Birgit Voigt; Britta Jürgen; Karen Methling; Dierk-Christoph Pöther; Heinrich Schäfer; Dirk Albrecht; Jörg Mostertz; Ulrike Mäder; Stefan Evers; Karl-Heinz Maurer; Michael Lalk; Thorsten Mascher; Michael Hecker; Thomas Schweder

The oxidative stress response of Bacillus licheniformis after treatment with hydrogen peroxide was investigated at the transcriptome, proteome and metabolome levels. In this comprehensive study, 84 proteins and 467 transcripts were found to be up or downregulated in response to the stressor. Among the upregulated genes were many that are known to have important functions in the oxidative stress response of other organisms, such as catalase, alkylhydroperoxide reductase or the thioredoxin system. Many of these genes could be grouped into putative regulons by genomic mining. The occurrence of oxidative damage to proteins was analyzed by a 2‐DE‐based approach. In addition, we report the induction of genes with hitherto unknown functions, which may be important for the specific oxidative stress response of B. licheniformis. The genes BLi04114 and BLi04115, that are located adjacent to the catalase gene, were massively induced during peroxide stress. Furthermore, the genes BLi04207 and BLi04208, which encode proteins homologous to glyoxylate cycle enzymes, were also induced by peroxide. Metabolomic analyses support the induction of the glyoxylate cycle during oxidative stress in B. licheniformis.


Drug Metabolism and Disposition | 2009

Investigation of the in vitro metabolism of the analgesic flupirtine

Karen Methling; Przyemslaw Reszka; Michael Lalk; Oldrich Vrana; Eberhard Scheuch; Werner Siegmund; Bernd Terhaag; Patrick J. Bednarski

The in vitro metabolism of flupirtine, ethyl-N-[2-amino-6-(4-fluorophenylmethyl-amino)pyridine-3-yl]carbamate, a centrally acting analgesic with muscle tone-reducing activity, was studied. Two flupirtine metabolites were already known: the N-acetylated analog D13223 and 4-fluorohippuric acid. The structure of flupirtine suggested that redox chemistry may play a role in metabolism, and cyclic voltammetry studies showed that the drug undergoes facile and irreversible redox reactions. Thus, oxidative metabolism was investigated first. With CYP3A1-induced rat liver microsomes an 18% turnover of flupirtine and a 20 to 25% turnover of D13223 took place over 30 min, but less than 5% turnover of flupirtine was observed with all human liver microsomal preparations tested, evidence that cytochrome P450 does not contribute appreciably to the metabolism in humans. Likewise, no involvement of human monoamine oxidase (isoforms A and B) was found for either flupirtine or D13223. In contrast, flupirtine was an excellent substrate for both human myeloperoxidase and horse radish peroxidase (HRP). These enzymes produced detectable amounts of oxidation products. Incubations of flupirtine with HRP produced an oxidation product that could be trapped with glutathione, the resulting glutathione conjugate was characterized by mass spectrometry and NMR. Metabolism of D13223 by both peroxidases was also observed but to a much lesser extent. Porcine liver esterases cleave the carbamate group of flupirtine, and both human N-acetyltransferases 1 and 2 acetylated the hydrolysis product, presumably descarboethoxyflupirtine, with nearly equal efficiencies to yield D13223. Incubations of human liver microsomes with flupirtine or the metabolite D13223 together with UDP-glucuronic acid gave two isomeric N-glucuronides in both cases.


PLOS ONE | 2014

Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress.

Stefan Handtke; Rebecca Schroeter; Britta Jürgen; Karen Methling; Rabea Schlüter; Dirk Albrecht; Sacha A. F. T. van Hijum; Johannes Bongaerts; Karl-Heinz Maurer; Michael Lalk; Thomas Schweder; Michael Hecker; Birgit Voigt

Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus.


BMC Microbiology | 2016

Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics

Verena Hoerr; Gavin E. Duggan; Lori Zbytnuik; Karen K. H. Poon; Christina Große; Ute Neugebauer; Karen Methling; Bettina Löffler; Hans J. Vogel

BackgroundThe emergence of antibiotic resistant pathogenic bacteria has reduced our ability to combat infectious diseases. At the same time the numbers of new antibiotics reaching the market have decreased. This situation has created an urgent need to discover novel antibiotic scaffolds. Recently, the application of pattern recognition techniques to identify molecular fingerprints in ‘omics’ studies, has emerged as an important tool in biomedical research and laboratory medicine to identify pathogens, to monitor therapeutic treatments or to develop drugs with improved metabolic stability, toxicological profile and efficacy. Here, we hypothesize that a combination of metabolic intracellular fingerprints and extracellular footprints would provide a more comprehensive picture about the mechanism of action of novel antibiotics in drug discovery programs.ResultsIn an attempt to integrate the metabolomics approach as a classification tool in the drug discovery processes, we have used quantitative 1H NMR spectroscopy to study the metabolic response of Escherichia coli cultures to different antibiotics. Within the frame of our study the effects of five different and well-known antibiotic classes on the bacterial metabolome were investigated both by intracellular fingerprint and extracellular footprint analysis. The metabolic fingerprints and footprints of bacterial cultures were affected in a distinct manner and provided complementary information regarding intracellular and extracellular targets such as protein synthesis, DNA and cell wall. While cell cultures affected by antibiotics that act on intracellular targets showed class-specific fingerprints, the metabolic footprints differed significantly only when antibiotics that target the cell wall were applied. In addition, using a training set of E. coli fingerprints extracted after treatment with different antibiotic classes, the mode of action of streptomycin, tetracycline and carbenicillin could be correctly predicted.ConclusionThe metabolic profiles of E. coli treated with antibiotics with intracellular and extracellular targets could be separated in fingerprint and footprint analysis, respectively and provided complementary information. Based on the specific fingerprints obtained for different classes of antibiotics, the mode of action of several antibiotics could be predicted. The same classification approach should be applicable to studies of other pathogenic bacteria.


PLOS Neglected Tropical Diseases | 2016

Proteomic Identification of Oxidized Proteins in Entamoeba histolytica by Resin-Assisted Capture: Insights into the Role of Arginase in Resistance to Oxidative Stress

Preeti Shahi; Meirav Trebicz-Geffen; Shruti Nagaraja; Sharon Alterzon-Baumel; Rivka Hertz; Karen Methling; Michael Lalk; Serge Ankri

Entamoeba histolytica is an obligate protozoan parasite of humans, and amebiasis, an infectious disease which targets the intestine and/or liver, is the second most common cause of human death due to a protozoan after malaria. Although amebiasis is usually asymptomatic, E. histolytica has potent pathogenic potential. During host infection, the parasite is exposed to reactive oxygen species that are produced and released by cells of the innate immune system at the site of infection. The ability of the parasite to survive oxidative stress (OS) is essential for a successful invasion of the host. Although the effects of OS on the regulation of gene expression in E. histolytica and the characterization of some proteins whose function in the parasites defense against OS have been previously studied, our knowledge of oxidized proteins in E. histolytica is lacking. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the oxidized proteins in oxidatively stressed E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry. We detected 154 oxidized proteins (OXs) and the functions of some of these proteins were associated with antioxidant activity, maintaining the parasites cytoskeleton, translation, catalysis, and transport. We also found that oxidation of the Gal/GalNAc impairs its function and contributes to the inhibition of E. histolytica adherence to host cells. We also provide evidence that arginase, an enzyme which converts L-arginine into L-ornithine and urea, is involved in the protection of the parasite against OS. Collectively, these results emphasize the importance of OS as a critical regulator of E. histolyticas functions and indicate a new role for arginase in E. histolyticas resistance to OS.


ChemMedChem | 2010

Synthesis, Enzymatic Evaluation, and Docking Studies of Fluorogenic Caspase 8 Tetrapeptide Substrates

Przemyslaw Reszka; Riad Schulz; Karen Methling; Michael Lalk; Patrick J. Bednarski

The synthesis, enzymatic evaluation, and molecular modeling studies of new fluorogenic tetrapeptide‐based substrates selective for caspase 8, having the general structure Ac‐IETD–AXX, are described. Various fluorescent reporter groups (AXX), i.e., 3‐ and 4‐substituted coumarins and quinolin‐2(1H)‐ones were synthesized by von Pechmann condensation. They were subsequently coupled with the caspase‐8‐selective tetrapeptide Ac‐IETD‐OH under newly developed synthetic conditions to give the desired substrates in good yields and in high enantiomeric purity. Based on KM and Vmax values, the new compounds proved to be excellent substrates for recombinant human caspase 8. In contrast, the KM values for the same compounds as substrates for human caspase 3 were approximately 10–20‐fold higher. Molecular modeling studies based on the X‐ray crystal structures of both human caspases 3 and 8 revealed that there is sufficient room within both active sites to accommodate substrates with moderately bulky substituents in the 3‐ and 4‐positions of the fluorogenic coumarins and quinolin‐2(1H)‐ones. Automated docking of the substrates into the active sites of both human caspases 3 and 8 with the program AutoDock 3 gave structures similar to the published crystallographic structures for the same tetrapeptide bound to caspase 8 in the form of an irreversible inhibitor. The calculated binding energies for the new substrates to either caspase 3 or 8 showed little difference between the substrates, consistent with the KM data. In addition, the calculated binding energies (ΔG) to caspase 8 were considerably more negative than those to caspase 3, also consistent with the KM data. A possible molecular interaction that might explain the selectivity of the IETD tetrapeptide motif for caspase 8 over caspase 3 is discussed.


BMC Microbiology | 2013

Role of N-terminal protein formylation in central metabolic processes in Staphylococcus aureus

Diana Mader; Manuel Liebeke; Volker Winstel; Karen Methling; Martina Leibig; Friedrich Götz; Michael Lalk; Andreas Peschel

BackgroundBacterial protein biosynthesis usually depends on a formylated methionyl start tRNA but Staphylococcus aureus is viable in the absence of Fmt, the tRNAMet formyl transferase. fmt mutants exhibit reduced growth rates indicating that the function of certain proteins depends on formylated N-termini but it has remained unclear, which cellular processes are abrogated by the lack of formylation.ResultsIn order to elucidate how global metabolic processes are affected by the absence of formylated proteins the exometabolome of an S. aureus fmt mutant was compared with that of the parental strain and the transcription of corresponding enzymes was analyzed to identify possible regulatory changes. The mutant consumed glucose and other carbon sources slower than the wild type. While the turnover of several metabolites remained unaltered fmt inactivation led to increases pyruvate release and, concomitantly, reduced pyruvate dehydrogenase activity. In parallel, the release of the pyruvate-derived metabolites lactate, acetoin, and alanine was reduced. The anaerobic degradation of arginine was also reduced in the fmt mutant compared to the wild-type strain. Moreover, the lack of formylated proteins caused increased susceptibility to the antibiotics trimethoprim and sulamethoxazole suggesting that folic acid-dependant pathways were perturbed in the mutant.ConclusionsThese data indicate that formylated proteins are crucial for specific bacterial metabolic processes and they may help to understand why it has remained important during bacterial evolution to initiate protein biosynthesis with a formylated tRNAMet.


Applied Microbiology and Biotechnology | 2009

Characterization of new oxidation products of 9H-carbazole and structure related compounds by biphenyl-utilizing bacteria

Doreen Waldau; Karen Methling; Annett Mikolasch; Frieder Schauer

Abstract9H-Carbazole and its derivatives are useful for versatile pharmacological applications. To obtain different derivatives of 9H-carbazole, 24 isolates of biphenyl-utilizing bacteria have been investigated regarding their ability to produce hydroxylated 9H-carbazole metabolites. Our analyses showed that 9H-carbazole was primarily converted into 9H-carbazol-1-ol (15 strains) and 9H-carbazol-3-ol (9 strains), while carbazol-9-ol was formed as a minor product (12 strains). The formation of 9H-carbazol-3-ol by the spontaneous release from the corresponding dihydrodiols was provided by the first-time detection of 3-hydroxy-1,2,3,9-tetrahydrocarbazol-4-one. The dependence of product yields on different parameters was exemplarily analyzed for Ralstonia sp. SBUG 290. Biphenyl-grown cells showed higher oxidation activities than cells cultivated with organic acids or nutrient broth, while co-cultivation of Ralstonia sp. SBUG 290 with biphenyl and 9H-carbazole led to an enhanced yield of 9H-carbazol-1-ol. The tested bacterial strains were also studied regarding their biotransformation of the two structure-related compounds 9H-fluorene and dibenzothiophene. Twenty-one strains primarily transformed 9H-fluorene into 9H-fluoren-9-ol and fluoren-9-one. Three strains accumulated benzo[c]chromen-6-one as a novel dead-end product during the incubation with 9H-fluorene, 9H-fluoren-9-ol, and fluoren-9-one. Dibenzothiophene has been mainly transformed into the dead-end product dibenzothiophene-5-oxide, while additional metabolites indicated that the transformation followed the so called Kodama pathway.


British Journal of Clinical Pharmacology | 2015

Metabolic activation and analgesic effect of flupirtine in healthy subjects, influence of the polymorphic NAT2, UGT1A1 and GSTP1

Werner Siegmund; Christiane Modess; Eberhard Scheuch; Karen Methling; Markus Keiser; A Nassif; Dieter Rosskopf; Patrick J. Bednarski; Jürgen Borlak; Bernd Terhaag

AIMS The rare association of flupirtine with liver injury is most likely caused by reactive quinone diimines and their oxidative formation may be influenced by the activities of N-acetyltransferases (NAT) that conjugate the less toxic metabolite D13223, and by glucuronosyltransferases (UGT) and glutathione S-transferases (GST) that generate stable terminal glucuronides and mercapturic acid derivatives, respectively. The influence of genetic polymorphisms of NAT2, UGT1A1 and GSTP1 on generation of the terminal mercapturic acid derivatives and analgesic effects was evaluated to identify potential genetic risk factors for hepatotoxicity of flupirtine. METHODS Metabolic disposition of flupirtine was measured after intravenous administration (100 mg), after swallowing an immediate-release (IR) tablet (100 mg) and after repeated administration of modified release (MR) tablets (400 mg once daily 8 days) in 36 selected healthy subjects. Analgesic effects were measured using pain models (delayed onset of muscle soreness, electric pain). RESULTS Flupirtine IR was rapidly but incompletely absorbed (∼ 72%). Repeated administration of flupirtine MR showed lower bioavailability (∼ 60%). Approximately 12% of bioavailable flupirtine IR and 8% of bioavailable flupiritine MR was eliminated as mercapturic acid derivatives into the urine independent of the UGT1A1, NAT2 and GSTP1 genotype. Carriers of variant GSTP1 alleles showed lower bioavailability but increased intestinal secretion of flupirtine and increased efficiency in experimental pain. Flupirtine was not a substrate for ABCB1 and ABCC2. CONCLUSIONS Formation of mercapturic acid derivatives is a major elimination route for flupirtine in man. However, the theoretically toxic pathway is not influenced by the frequent polymorphisms of UGT1A1, NAT2 and GSTP1.


Journal of Biotechnology | 2014

Cell physiology of the biotechnological relevant bacterium Bacillus pumilus-an omics-based approach.

Stefan Handtke; Sonja Volland; Karen Methling; Dirk Albrecht; Dörte Becher; Jenny Nehls; Johannes Bongaerts; Karl-Heinz Maurer; Michael Lalk; Heiko Liesegang; Birgit Voigt; Rolf Daniel; Michael Hecker

Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed.

Collaboration


Dive into the Karen Methling's collaboration.

Top Co-Authors

Avatar

Michael Lalk

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beate Haertel

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Dirk Albrecht

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Nadin Schultze

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Paula Zwicker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge