Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen S. Jakes is active.

Publication


Featured researches published by Karen S. Jakes.


Molecular Cell | 2001

Crystal structure of colicin E3: implications for cell entry and ribosome inactivation.

Sandriyana Soelaiman; Karen S. Jakes; Nan Wu; Chunmin Li; Menachem Shoham

Colicins kill E. coli by a process that involves binding to a surface receptor, entering the cell, and, finally, intoxicating it. The lethal action of colicin E3 is a specific cleavage in the ribosomal decoding A site. The crystal structure of colicin E3, reported here in a binary complex with its immunity protein (IP), reveals a Y-shaped molecule with the receptor binding domain forming a 100 A long stalk and the two globular heads of the translocation domain (T) and the catalytic domain (C) comprising the two arms. Active site residues are D510, H513, E517, and R545. IP is buried between T and C. Rather than blocking the active site, IP prevents access of the active site to the ribosome.


The Journal of Membrane Biology | 1997

Transmembrane insertion of the colicin Ia hydrophobic hairpin.

Paul K. Kienker; X. Q. Qiu; Stephen L. Slatin; Alan Finkelstein; Karen S. Jakes

Colicin Ia is a bactericidal protein that forms voltage-dependent, ion-conducting channels, both in the inner membrane of target bacteria and in planar bilayer membranes. Its amino acid sequence is rich in charged residues, except for a hydrophobic segment of 40 residues near the carboxyl terminus. In the crystal structure of colicin Ia and related colicins, this segment forms an α-helical hairpin. The hydrophobic segment is thought to be involved in the initial association of the colicin with the membrane and in the formation of the channel, but various orientations of the hairpin with respect to the membrane have been proposed. To address this issue, we attached biotin to a residue at the tip of the hydrophobic hairpin, and then probed its location with the biotin-binding protein streptavidin, added to one side or the other of a planar bilayer. Streptavidin added to the same side as the colicin prevented channel opening. Prior addition of streptavidin to the opposite side protected channels from this effect, and also increased the rate of channel opening; it produced these effects even before the first opening of the channels. These results suggest a model of membrane association in which the colicin first binds with the hydrophobic hairpin parallel to the membrane; next the hairpin inserts in a transmembrane orientation; and finally the channel opens. We also used streptavidin binding to obtain a stable population of colicin molecules in the membrane, suitable for the quantitative study of voltage-dependent gating. The effective gating charge thus determined is pH-independent and relatively small, compared with previous results for wildtype colicin Ia.


The EMBO Journal | 2007

Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import

Susan K. Buchanan; Petra Lukacik; Sylvestre Grizot; Rodolfo Ghirlando; Maruf M.U. Ali; Travis J. Barnard; Karen S. Jakes; Paul K. Kienker; Lothar Esser

Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage‐dependent ion channel. We determined crystal structures of colicin I receptor alone and in complex with the receptor binding domain of colicin Ia. The receptor undergoes large and unusual conformational changes upon colicin binding, opening at the cell surface and positioning the receptor binding domain of colicin Ia directly above it. We modelled the interaction with full‐length colicin Ia to show that the channel forming domain is initially positioned 150 Å above the cell surface. Functional data using full‐length colicin Ia show that colicin I receptor is necessary for cell surface binding, and suggest that the receptor participates in translocation of colicin Ia across the outer membrane.


Molecular Microbiology | 2010

THE COLICIN Ia RECEPTOR, Cir, IS ALSO THE TRANSLOCATOR FOR COLICIN Ia

Karen S. Jakes; Alan Finkelstein

Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ias receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ias receptor‐binding domain, Cir also binds weakly to its translocation domain.


Annual Review of Genetics | 2012

Border Crossings: Colicins and Transporters

Karen S. Jakes; William A. Cramer

Colicins are protein toxins produced by Escherichia coli to kill related bacteria. They must cross the target cell outer membrane (OM), and some must also cross the inner membrane (IM). To accomplish cellular import, colicins have parasitized E. coli nutrient transporters as well as IM and periplasmic proteins normally used to maintain cell wall integrity or provide energy for nutrient uptake through transporters. Colicins have evolved to use both transporters and other membrane proteins through mechanisms different from those employed in physiological substrate uptake. Extended receptor-binding domains allow some colicins to search by lateral diffusion for binding sites on their OM translocators while bound to their primary OM receptor. Transport across the OM is initiated by entry of the unstructured N-terminal translocation domain into the translocator. Periplasmic and IM networks subsequently accomplish insertion of the colicin cytotoxic domain into or across the IM.


Biochimica et Biophysica Acta | 2002

Conformational changes of colicin Ia channel-forming domain upon membrane binding: a solid-state NMR study.

Daniel Huster; Xiaolan Yao; Karen S. Jakes; Mei Hong

Channel-forming colicins are bactericidal proteins that spontaneously insert into hydrophobic lipid bilayers. We have used magic-angle spinning solid-state nuclear magnetic resonance spectroscopy to examine the conformational differences between the water-soluble and the membrane-bound states of colicin Ia channel domain, and to study the effect of bound colicin on lipid bilayer structure and dynamics. We detected (13)C and (15)N isotropic chemical shift differences between the two forms of the protein, which indicate structural changes of the protein due to membrane binding. The Val C(alpha) signal, unambiguously assigned by double-quantum experiments, gave a 0.6 ppm downfield shift in the isotropic position and a 4 ppm reduction in the anisotropic chemical shift span after membrane binding. These suggest that the alpha-helices in the membrane-bound colicin adopt more ideal helical torsion angles as they spread onto the membrane. Colicin binding significantly reduced the lipid chain order, as manifested by (2)H quadrupolar couplings. These results are consistent with the model that colicin Ia channel domain forms an extended helical array at the membrane-water interface upon membrane binding.


The Journal of General Physiology | 2011

Trapping a translocating protein within the anthrax toxin channel: implications for the secondary structure of permeating proteins

Daniel Basilio; Laura D. Jennings-Antipov; Karen S. Jakes; Alan Finkelstein

Anthrax toxin consists of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). This last forms a heptameric channel, (PA63)7, in the host cell’s endosomal membrane, allowing the former two (which are enzymes) to be translocated into the cytosol. (PA63)7 incorporated into planar bilayer membranes forms a channel that translocates LF and EF, with the N terminus leading the way. The channel is mushroom-shaped with a cap containing the binding sites for EF and LF, and an ∼100 Å–long, 15 Å–wide stem. For proteins to pass through the stem they clearly must unfold, but is secondary structure preserved? To answer this question, we developed a method of trapping the polypeptide chain of a translocating protein within the channel and determined the minimum number of residues that could traverse it. We attached a biotin to the N terminus of LFN (the 263-residue N-terminal portion of LF) and a molecular stopper elsewhere. If the distance from the N terminus to the stopper was long enough to traverse the channel, streptavidin added to the trans side bound the N-terminal biotin, trapping the protein within the channel; if this distance was not long enough, streptavidin did not bind the N-terminal biotin and the protein was not trapped. The trapping rate was dependent on the driving force (voltage), the length of time it was applied, and the number of residues between the N terminus and the stopper. By varying the position of the stopper, we determined the minimum number of residues required to span the channel. We conclude that LFN adopts an extended-chain configuration as it translocates; i.e., the channel unfolds the secondary structure of the protein. We also show that the channel not only can translocate LFN in the normal direction but also can, at least partially, translocate LFN in the opposite direction.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Translocation of a functional protein by a voltage-dependent ion channel

Stephen L. Slatin; Angèle Nardi; Karen S. Jakes; Daniel Baty; Denis Duché

The voltage-dependent gating of the colicin channel involves a substantial structural rearrangement that results in the transfer of about 35% of the 200 residues in its pore-forming domain across the membrane. This transfer appears to represent an unusual type of protein translocation that does not depend on a large, multimeric, protein pore. To investigate the ability of this system to transport arbitrary proteins, we made use of a pair of strongly interacting proteins, either of which could serve as a translocated cargo or as a probe to detect the other. Here we show that both an 86-residue and a 134-residue hydrophilic protein inserted into the translocated segment of colicin A are themselves translocated and are functional on the trans side of the bilayer. The disparate features of these proteins suggest that the colicin channel has a general protein translocation mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Reconstitution of bacterial outer membrane TonB-dependent transporters in planar lipid bilayer membranes

Eshwar Udho; Karen S. Jakes; Susan K. Buchanan; Karron J. James; Xiaoxu Jiang; Phillip E. Klebba; Alan Finkelstein

Micronutrients such as siderophore-bound iron and vitamin B12 cross the outer membrane of Gram-negative bacteria through a group of 22-stranded β-barrel proteins. They share the unusual feature that their N-terminal end inserts from the periplasmic side into the β-barrel and plugs the lumen. Transport results from energy-driven movement of TonB protein, which either pulls the plug out of the barrel or causes it to rearrange within the barrel. Attempts to reconstitute native plugged channels in an ion-conducting state in lipid bilayer membranes have so far been unsuccessful. We, however, have discovered that if the cis solution contained 4 M urea, then, with the periplasmic side of the channel facing that solution, macroscopic conductances and single channel events could be observed. These results were obtained with FhuA, Cir, and BtuB; for the former two, the channels were closed by removing the 4 M urea. Channels generated by 4 M urea exposure were not a consequence of general protein denaturation, as their ligand-binding properties were preserved. Thus, with FhuA, addition of ferrichrome (its siderophore) to the trans, extracellular-facing side reversibly inhibited 4 M urea-induced channel opening and blocked the channels. With Cir, addition of colicin Ia (the microbial toxin that targets Cir) to the trans, extracellular-facing side prevented 4 M urea-induced channel opening. We hypothesize that 4 M urea reversibly unfolds the FhuA and Cir plugs, thereby opening an ion-conducting pathway through these channels, and that this mimics to some extent the in vivo action of TonB on these plugs.


Journal of Molecular Biology | 1982

Replication origin of bacteriophage f1. Two signals required for its function.

Gian Paolo Dotto; Kensuke Horiuchi; Karen S. Jakes; Norton D. Zinder

Abstract Plus strand synthesis in bacteriophage f1 initiates in a region of dyad symmetry at a specific site (plus origin) recognized and nicked by the viral gene II protein. In this paper we describe several small deletions on the 5′ side of the f1 plus origin which disrupt the region of dyad symmetry and extend up to only four nucleotides from the gene II protein nicking site. These deletions do not impair the ability of gene II protein in vitro to nick this site. However, they do inhibit in vivo plus strand synthesis. We conclude that the nucleotide sequence at the f1 plus origin contains at least two specific signals that are required for efficient plus strand synthesis.

Collaboration


Dive into the Karen S. Jakes's collaboration.

Top Co-Authors

Avatar

Alan Finkelstein

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Paul K. Kienker

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Stephen L. Slatin

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan K. Buchanan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eshwar Udho

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rodolfo Ghirlando

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles K. Abrams

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lothar Esser

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mei Hong

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge