Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Schindler is active.

Publication


Featured researches published by Karen Schindler.


Current Biology | 2010

Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes.

Teresa Chiang; Francesca E. Duncan; Karen Schindler; Richard M. Schultz; Michael A. Lampson

Aneuploidy arising early in development is the leading genetic cause of birth defects and developmental disabilities in humans. Most errors in chromosome number originate from the egg, and maternal age is well established as the key risk factor. Although the importance of this problem for reproductive health is widely recognized, the underlying molecular basis for age-related aneuploidy in female meiosis is unknown. Here we show that weakened chromosome cohesion is a leading cause of aneuploidy in oocytes in a natural aging mouse model. We find that sister kinetochores are farther apart at both metaphase I and II, indicating reduced centromere cohesion. Moreover, levels of the meiotic cohesin protein REC8 are severely reduced on chromosomes in oocytes from old mice. To test whether cohesion defects lead to the observed aneuploidies, we monitored chromosome segregation dynamics at anaphase I in live oocytes and counted chromosomes in the resulting metaphase II eggs. About 90% of age-related aneuploidies are best explained by weakened centromere cohesion. Together, these results demonstrate that the maternal age-associated increase in aneuploidy is often due to a failure to effectively replace cohesin proteins that are lost from chromosomes during aging.


Molecular Reproduction and Development | 2009

Aurora kinase B modulates chromosome alignment in mouse oocytes

Kristy Shuda; Karen Schindler; Jun Ma; Richard M. Schultz; Peter J. Donovan

The elevated incidence of aneuploidy in human oocytes warrants study of the molecular mechanisms regulating proper chromosome segregation. The Aurora kinases are a well‐conserved family of serine/threonine kinases that are involved in proper chromosome segregation during mitosis and meiosis. Here we report the expression and localization of all three Aurora kinase homologs, AURKA, AURKB, and AURKC, during meiotic maturation of mouse oocytes. AURKA, the most abundantly expressed homolog, localizes to the spindle poles during meiosis I (MI) and meiosis II (MII), whereas AURKB is concentrated at kinetochores, specifically at metaphase of MI (Met I). The germ cell‐specific homolog, AURKC, is found along the entire length of chromosomes during both meiotic divisions. Maturing oocytes in the presence of the small molecule pan‐Aurora kinase inhibitor, ZM447439 results in defects in meiotic progression and chromosome alignment at both Met I and Met II. Over‐expression of AURKB, but not AURKA or AURKC, rescues the chromosome alignment defect suggesting that AURKB is the primary Aurora kinase responsible for regulating chromosome dynamics during meiosis in mouse oocytes. Mol. Reprod. Dev. 76: 1094–1105, 2009.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Maternally recruited Aurora C kinase is more stable than Aurora B to support mouse oocyte maturation and early development

Karen Schindler; Olga Davydenko; Brianna Fram; Michael A. Lampson; Richard M. Schultz

Aurora kinases are highly conserved, essential regulators of cell division. Two Aurora kinase isoforms, A and B (AURKA and AURKB), are expressed ubiquitously in mammals, whereas a third isoform, Aurora C (AURKC), is largely restricted to germ cells. Because AURKC is very similar to AURKB, based on sequence and functional analyses, why germ cells express AURKC is unclear. We report that Aurkc−/− females are subfertile, and that AURKB function declines as development progresses based on increasing severity of cytokinesis failure and arrested embryonic development. Furthermore, we find that neither Aurkb nor Aurkc is expressed after the one-cell stage, and that AURKC is more stable during maturation than AURKB using fluorescently tagged reporter proteins. In addition, Aurkc mRNA is recruited during maturation. Because maturation occurs in the absence of transcription, posttranscriptional regulation of Aurkc mRNA, coupled with the greater stability of AURKC protein, provides a means to ensure sufficient Aurora kinase activity, despite loss of AURKB, to support both meiotic and early embryonic cell divisions. These findings suggest a model for the presence of AURKC in oocytes: that AURKC compensates for loss of AURKB through differences in both message recruitment and protein stability.


Biology of Reproduction | 2009

CDC14B Acts Through FZR1 (CDH1) to Prevent Meiotic Maturation of Mouse Oocytes

Karen Schindler; Richard M. Schultz

Abstract Meiotic maturation in oocytes is a prolonged process that is unique because of cell cycle arrests at prophase of meiosis I (MI) and at metaphase of meiosis II (MII). Fluctuations in cyclin-dependent kinase 1 (CDK1/CDC2A) activity govern meiotic progression, yet little is known about how these fluctuations are achieved. CDC14 is a highly conserved dual-specificity phosphatase that counteracts the function of proteins phosphorylated by CDK. Mammals contain two CDC14 homologs, CDC14A and CDC14B. We report that CDC14B localizes with the meiotic spindle in mouse oocytes, and (unlike somatic cells) it does not localize in the nucleolus. Oocytes that overexpress CDC14B are significantly delayed in resuming meiosis and fail to progress to MII, whereas oocytes depleted of CDC14B spontaneously resume meiosis under conditions that normally inhibit meiotic resumption. Depletion of FZR1 (CDH1), a regulatory subunit of the anaphase-promoting complex/cyclosome that targets cyclin B1 (CCNB1) for ubiquitin-mediated proteolysis, partially restores normal timing of meiotic resumption in oocytes with excess CDC14B. These studies also reveal that experimentally altering CDC14B levels generates eggs with abnormal spindles and with chromosome alignment perturbations. Our data indicate that CDC14B is a negative regulator of meiotic resumption and may regulate MI in mouse oocytes.


PLOS Genetics | 2014

Selective Disruption of Aurora C Kinase Reveals Distinct Functions from Aurora B Kinase during Meiosis in Mouse Oocytes

Ahmed Z. Balboula; Karen Schindler

Aurora B kinase (AURKB) is the catalytic subunit of the chromosomal passenger complex (CPC), an essential regulator of chromosome segregation. In mitosis, the CPC is required to regulate kinetochore microtubule (K-MT) attachments, the spindle assembly checkpoint, and cytokinesis. Germ cells express an AURKB homolog, AURKC, which can also function in the CPC. Separation of AURKB and AURKC function during meiosis in oocytes by conventional approaches has not been successful. Therefore, the meiotic function of AURKC is still not fully understood. Here, we describe an ATP-binding-pocket-AURKC mutant, that when expressed in mouse oocytes specifically perturbs AURKC-CPC and not AURKB-CPC function. Using this mutant we show for the first time that AURKC has functions that do not overlap with AURKB. These functions include regulating localized CPC activity and regulating chromosome alignment and K-MT attachments at metaphase of meiosis I (Met I). We find that AURKC-CPC is not the sole CPC complex that regulates the spindle assembly checkpoint in meiosis, and as a result most AURKC-perturbed oocytes arrest at Met I. A small subset of oocytes do proceed through cytokinesis normally, suggesting that AURKC-CPC is not the sole CPC complex during telophase I. But, the resulting eggs are aneuploid, indicating that AURKC is a critical regulator of meiotic chromosome segregation in female gametes. Taken together, these data suggest that mammalian oocytes contain AURKC to efficiently execute meiosis I and ensure high-quality eggs necessary for sexual reproduction.


Molecular and Cellular Biology | 2002

CAK1 Promotes Meiosis and Spore Formation in Saccharomyces cerevisiae in a CDC28-Independent Fashion

Michael Schaber; Anne Lindgren; Karen Schindler; David Bungard; Philipp Kaldis; Edward Winter

ABSTRACT CAK1 encodes a protein kinase in Saccharomyces cerevisiae whose sole essential mitotic role is to activate the Cdc28p cyclin-dependent kinase by phosphorylation of threonine-169 in its activation loop. SMK1 encodes a sporulation-specific mitogen-activated protein (MAP) kinase homolog that is required to regulate the postmeiotic events of spore wall assembly. CAK1 was previously identified as a multicopy suppressor of a weakened smk1 mutant and shown to be required for spore wall assembly. Here we show that Smk1p, like other MAP kinases, is phosphorylated in its activation loop and that Smk1p is not activated in a cak1 missense mutant. Strains harboring a hyperactivated allele of CDC28 that is CAK1 independent and that lacks threonine-169 still require CAK1 to activate Smk1p. The data indicate that Cak1p functions upstream of Smk1p by activating a protein kinase other than Cdc28p. We also found that mutants lacking CAK1 are blocked early in meiotic development, as they show substantial delays in premeiotic DNA synthesis and defects in the expression of sporulation-specific genes, including IME1. The early meiotic role of Cak1p, like the postmeiotic role in the Smk1p pathway, is CDC28 independent. The data indicate that Cak1p activates multiple steps in meiotic development through multiple protein kinase targets.


Molecular and Cellular Biology | 2003

The Cdk-activating kinase Cak1p promotes meiotic S phase through Ime2p

Karen Schindler; Kirsten R. Benjamin; Allison Martin; Andrew Boglioli; Ira Herskowitz; Edward Winter

ABSTRACT CAK1 encodes an essential protein kinase in Saccharomyces cerevisiae that is required for activation of the Cdc28p Cdk. CAK1 also has several CDC28-independent functions that are unique to meiosis. The earliest of these functions is to induce S phase, which is regulated differently in meiosis than in mitosis. In mitosis, Cdc28p controls its own S-phase-promoting activity by signaling the destruction of its inhibitor, Sic1p. In meiosis, Sic1p destruction is signaled by the meiosis-specific Ime2p protein kinase. Our data show that Cak1p is required to activate Ime2p through a mechanism that requires threonine 242 and tyrosine 244 in Ime2ps activation loop. This activation promotes autophosphorylation and accumulation of multiply phosphorylated forms of Ime2p during meiotic development. Consistent with Cak1ps role in activating Ime2p, cells lacking Cak1p are deficient in degrading Sic1p. Deletion of SIC1 or overexpression of IME2 can partially suppress the S-phase defect in cak1 mutant cells, suggesting that Ime2p is a key target of Cak1p regulation. These data show that Cak1p is required for the destruction of Sic1p in meiosis, as in mitosis, but in meiosis, it functions through a sporulation-specific kinase.


Journal of Cell Science | 2013

Cdc25A activity is required for the metaphase II arrest in mouse oocytes

Jeong Su Oh; Andrej Susor; Karen Schindler; Richard M. Schultz; Marco Conti

Summary Mammalian oocytes are arrested in metaphase of second meiosis (MII) until fertilization. This arrest is enforced by the cytostatic factor (CSF), which maintains the M-phase promoting factor (MPF) in a highly active state. Although the continuous synthesis and degradation of cyclin B to maintain the CSF-mediated MII arrest is well established, it is unknown whether cyclin-dependent kinase 1 (Cdk1) phosphorylations are involved in this arrest in mouse oocytes. Here, we show that a dynamic equilibrium of Cdk1 phosphorylation is required to maintain MII arrest. When the Cdc25A phosphatase is downregulated, mouse oocytes are released from MII arrest and MPF becomes inactivated. This inactivation occurs in the absence of cyclin B degradation and is dependent on Wee1B-mediated phosphorylation of Cdk1. Thus, our data demonstrate that Cdk1 activity is maintained during MII arrest not only by cyclin turnover but also by steady state phosphorylation.


Journal of Biological Chemistry | 2006

Phosphorylation of Ime2 Regulates Meiotic Progression in Saccharomyces cerevisiae

Karen Schindler; Edward Winter

Ime2p is a meiosis-specific protein kinase in Saccharomyces cerevisiae that controls multiple steps in meiosis. Although Ime2p is functionally related to the Cdc28p cyclin-dependent kinase (CDK), no cyclin binding partners that regulate its activities have been identified. The sequence of the Ime2p catalytic domain is similar to CDKs and mitogen-activated protein kinases (MAPKs). Ime2p is activated by phosphorylation of its activation loop in a Cak1p-dependent fashion and is subsequently phosphorylated on multiple residues as cells progress through meiosis. In this study, we show that Ime2p purified from meiotic cells is phosphorylated on Thr242 and Tyr244 in its activation loop and on Ser520 and Ser625 in its C terminus. Ime2p autophosphorylates on threonine in its activation loop in vitro consistent with autophosphorylation of Thr242 playing a role in its activation. Moreover, autophosphorylation in cis is required for Ime2p to become hyperphosphorylated. Phosphorylation of the C-terminal serines is not essential to sporulation. However, Ime2p C-terminal phosphorylation site mutants genetically interact with components of the FEAR network that controls exit from meiosis I. These data suggest that Ime2p plays a role in controlling the exit from meiosis I and demonstrate that a phospho-modification pathway regulates Ime2p during the different phases of meiotic development.


Journal of Cell Science | 2014

Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes.

Alexandra L. Nguyen; Amanda S. Gentilello; Ahmed Z. Balboula; Vibha Shrivastava; Jacob Ohring; Karen Schindler

ABSTRACT Meiosis I (MI), the division that generates haploids, is prone to errors that lead to aneuploidy in females. Haspin is a kinase that phosphorylates histone H3 on threonine 3, thereby recruiting Aurora kinase B (AURKB) and the chromosomal passenger complex (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an AURKB homolog, are enriched in germ cells, yet their significance in regulating MI is not fully understood. Using inhibitors and overexpression approaches, we show a role for haspin during MI in mouse oocytes. Haspin-perturbed oocytes display abnormalities in chromosome morphology and alignment, improper kinetochore–microtubule attachments at metaphase I and aneuploidy at metaphase II. Unlike in mitosis, kinetochore localization remained intact, whereas the distribution of the CPC along chromosomes was absent. The meiotic defects following haspin inhibition were similar to those observed in oocytes where AURKC was inhibited, suggesting that the correction of microtubule attachments during MI requires AURKC along chromosome arms rather than at kinetochores. Our data implicate haspin as a regulator of the CPC and chromosome segregation during MI, while highlighting important differences in how chromosome segregation is regulated between MI and mitosis.

Collaboration


Dive into the Karen Schindler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward Winter

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Davydenko

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Paula Stein

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge