Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Sermon is active.

Publication


Featured researches published by Karen Sermon.


Human Reproduction | 2008

ESHRE PGD Consortium data collection VI: cycles from January to December 2003 with pregnancy follow-up to October 2004

Karen Sermon; An Michiels; Gary Harton; Céline Moutou; Sjoerd Repping; Paul N. Scriven; Sioban SenGupta; Joanne Traeger-Synodinos; Katerina Vesela; Stéphane Viville; Leeanda Wilton; Joyce C. Harper

The sixth report of the ESHRE PGD Consortium is presented, relating to cycles collected for the calendar year 2003 and follow-up of the pregnancies and babies born up to October 2004. Since the beginning of the data collections, there has been a steady rise in the number of cycles, pregnancies and babies reported. For this report, 50 centres participated, reporting on 2984 cycles, 501 pregnancies and 373 babies born. Five hundred and twenty-nine cycles were reported for chromosomal abnormalities, 516 cycles were reported for monogenic diseases, 137 cycles were reported for sexing for X-linked diseases, 1722 cycles were reported for preimplantation genetic screening (PGS) and 80 cycles were reported for social sexing. Data VI is compared to the cumulative data for data collections I-V.


The Lancet | 2003

Preimplantation genetic diagnosis

Karen Sermon; André Van Steirteghem; Inge Liebaers

Preimplantation genetic diagnosis (PGD) was introduced at the beginning of the 1990s as an alternative to prenatal diagnosis, to prevent termination of pregnancy in couples with a high risk for offspring affected by a sex-linked genetic disease. At that time, embryos obtained in vitro were tested to ascertain their sex, and only female embryos were transferred. Since then, techniques for genetic analysis at the single-cell level, involving assessment of first and second polar bodies from oocytes or blastomeres from cleavage-stage embryos, have evolved. Fluorescence in-situ hybridisation (FISH) has been introduced for the analysis of chromosomes and PCR for the analysis of genes in cases of monogenic diseases. In-vitro culture of embryos has also improved through the use of sequential media. Here, we provide an overview of indications for, and techniques used in, PGD, and discuss results obtained with the technique and outcomes of pregnancies. A brief review of new technologies is also included.


Nature Biotechnology | 2008

Recurrent chromosomal abnormalities in human embryonic stem cells

Claudia Spits; Ileana Mateizel; Mieke Geens; Afroditi Mertzanidou; Catherine Staessen; Yves Vandeskelde; Josiane Van der Elst; Inge Liebaers; Karen Sermon

Cultured human embryonic stem (hES) cells have a known predisposition to aneuploidy of chromosomes 12, 17 and X. We studied 17 hES cell lines by array-based comparative genomic hybridization (aCGH) and found that the cells accumulate other recurrent chromosomal abnormalities, including amplification at 20q11.21 and a derivative chromosome 18. These genomic changes have a variable impact at the transcriptional level.


Nucleic Acids Research | 2006

Single-cell chromosomal imbalances detection by array CGH

Cédric Le Caignec; Claudia Spits; Karen Sermon; Martine De Rycke; Bernard Thienpont; Sophie Debrock; Catherine Staessen; Yves Moreau; Jean-Pierre Fryns; André Van Steirteghem; Inge Liebaers; Joris Vermeesch

Genomic imbalances are a major cause of constitutional and acquired disorders. Therefore, aneuploidy screening has become the cornerstone of preimplantation, prenatal and postnatal genetic diagnosis, as well as a routine aspect of the diagnostic workup of many acquired disorders. Recently, array comparative genomic hybridization (array CGH) has been introduced as a rapid and high-resolution method for the detection of both benign and disease-causing genomic copy-number variations. Until now, array CGH has been performed using a significant quantity of DNA derived from a pool of cells. Here, we present an array CGH method that accurately detects chromosomal imbalances from a single lymphoblast, fibroblast and blastomere within a single day. Trisomy 13, 18, 21 and monosomy X, as well as normal ploidy levels of all other chromosomes, were accurately determined from single fibroblasts. Moreover, we showed that a segmental deletion as small as 34 Mb could be detected. Finally, we demonstrated the possibility to detect aneuploidies in single blastomeres derived from preimplantation embryos. This technique offers new possibilities for genetic analysis of single cells in general and opens the route towards aneuploidy screening and detection of unbalanced translocations in preimplantation embryos in particular.


Human Reproduction | 2009

The causes of misdiagnosis and adverse outcomes in PGD

Leeanda Wilton; Alan R. Thornhill; Joanne Traeger-Synodinos; Karen Sermon; Joyce C. Harper

The European Society of Human Reproduction and Embryology PGD Consortium has collected data on PGD cycles and deliveries since 1997. From 15,158 cycles, 24 misdiagnoses and adverse outcomes have been reported; 12/2538 cycles after polymerase chain reaction and 12/12,620 cycles after fluorescence in situ hybridization. The causes of misdiagnosis include confusion of embryo and cell number, transfer of the wrong embryo, maternal or paternal contamination, allele dropout, use of incorrect and inappropriate probes or primers, probe or primer failure and chromosomal mosaicism. Unprotected sex has been mentioned as a cause of adverse outcome not related to technical and human errors. The majority of these causes can be prevented by using robust diagnostic methods within laboratories working to appropriate quality standards. However, diagnosis from a single cell remains a technically challenging procedure, and the risk of misdiagnosis cannot be eliminated.


Nature Protocols | 2006

Whole-genome multiple displacement amplification from single cells

Claudia Spits; Cédric Le Caignec; Martine De Rycke; Lindsey Van Haute; André Van Steirteghem; Inge Liebaers; Karen Sermon

Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the φ29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1–2 μg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.Note: In the version of this article initially published online, the third and fourth panels of Figure 1 (p. 1965) were incorrectly drawn. Figure 1 has been corrected in all versions of the article.


Gastroenterology | 2010

Noggin, Retinoids, and Fibroblast Growth Factor Regulate Hepatic or Pancreatic Fate of Human Embryonic Stem Cells

Josué K. Mfopou; Bing Chen; Ileana Mateizel; Karen Sermon; Luc Bouwens

BACKGROUND & AIMS New sources of beta cells are needed to develop cell therapies for patients with diabetes. An in vitro, sequential method has been developed to derive pancreatic progenitors, but this technique has not been used for other cell lines. We investigated whether definitive endoderm derived from human embryonic stem (hES) cells might be used to create beta cells. METHODS Five hES cell lines were induced to form pancreatic progenitors and analyzed for pancreas markers. Cells were incubated with a bone morphogenetic protein (BMP) antagonist, retinoids, a Hedgehog antagonist, or fibroblast growth factor (FGF) and phenotypes were analyzed. RESULTS Four hES cell lines sequentially generated definitive endoderm, primitive gut, and posterior foregut equivalents, as described previously. However, functional hepatocytes, rather than pancreas progenitors, developed. Consistent with liver development, FGF and BMP signaling pathways were involved in this process; their inhibition disrupted hepatocyte differentiation. During early stages of development, exposure of cells to noggin and retinoid acid, followed by FGF10, generated pancreatic cells (PDX1+; 50%-80%) that coexpressed FOXA2, HNF6, and SOX9. CONCLUSIONS These findings demonstrate the combined functions of endogenous BMP and supplemented FGF in inducing differentiation of hepatocytes from hES cells and the ability to shift developmental pathways from hepatic to pancreatic cell differentiation. Although additional signals appear to be required for full specification of PDX1(+) early pancreatic progenitors (via PTF1a and NKX6.1 coexpression), these findings indicate the signaling pathways required for differentiation of bipotential progenitors.


Prenatal Diagnosis | 2000

Embryo implantation after biopsy of one or two cells from cleavage-stage embryos with a view to preimplantation genetic diagnosis

Hilde Van de Velde; Anick De Vos; Karen Sermon; Catherine Staessen; Martine De Rycke; Elvire Van Assche; Willy Lissens; M. Vandervorst; Heidi Van Ranst; Inge Liebaers; André Van Steirteghem

Preimplantation genetic diagnosis (PGD) can be offered as an alternative to prenatal diagnosis (PND) to couples at risk of having a child with a genetic disease. The affected embryos are detected before implantation by fluorescent in situ hybridisation (FISH) for sexing (X‐linked diseases) and chromosomal disorders (numerical and structural) or by polymerase chain reaction (PCR) for monogenic disorders (including some X‐linked diseases). The accuracy and reliability of the diagnosis is increased by analysing two blastomeres of the embryo. However, the removal of two blastomeres might have an effect on the implantation capacity of the embryo. We have evaluated the implantation of embryos after the removal of one, two or three cells in 188 PGD cycles where a transfer was done. The patients were divided into five groups: a first group which received only embryos from which one cell had been removed, a second group which received only embryos from which two cells had been removed, a third group which received a mixture of embryos from which one and two cells had been taken, a fourth group where two and three cells had been removed, and a fifth group where three cells had been removed. The overall ongoing pregnancy rate per transfer was 26.1%, the overall implantation rate per transfer was 15.2% and the overall birth rate was 14.2%. Although pregnancy rates between the groups cannot be compared because the second group (two cells removed) contains more rapidly developing and therefore ‘better quality’ embryos, an ongoing pregnancy rate of 29.1% and an implantation rate of 18.6% per transferred embryo in this group is acceptable, and we therefore advise analysing two cells from a ≥7‐cell stage embryo in order to render the diagnosis more accurate and reliable. Copyright


Human Reproduction | 2013

Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos

Afroditi Mertzanidou; L Wilton; Jiqiu Cheng; Claudia Spits; Evelyne Vanneste; Yves Moreau; Joris Vermeesch; Karen Sermon

STUDY QUESTION What are the aneuploidy rates and incidence of mosaicism in good-quality human preimplantation embryos. SUMMARY ANSWER High-level mosaicism and structural aberrations are not restricted to arrested or poorly developing embryos but are also common in good-quality IVF embryos. WHAT IS KNOWN ALREADY Humans, compared with other mammals, have a poor fertility rate, and even IVF treatments have a relatively low success rate. It is known that human gametes and early preimplantation embryos carry chromosomal abnormalities that are thought to lower their developmental potential. STUDY DESIGN, SIZE AND DURATION The embryos studied came from nine young (age <35 years old) IVF patients and were part of a cohort of embryos that all resulted in healthy births. These 14 embryos inseminated by ICSI and cryopreserved on Day 2 of development were thawed, cultured overnight and allowed to succumb by being left at room temperature for 24 h. Following removal of the zona pellucida, blastomeres were disaggregated and collected. PARTICIPANTS/MATERIALS, SETTING AND METHODS There were 91 single blastomeres collected and amplified by multiple displacement amplification. Array-comparative genomic hybridization was performed on the amplified DNA. Array-data were normalized and aneuploidy was detected by the circular binary segmentation method. MAIN RESULTS AND THE ROLE OF CHANCE The good-quality embryos exhibited high rates of aneuploidy, 10 of 14 (71.4%) of the embryos being mosaic. While none of the embryos had the same aneuploidy pattern in all cells, 4 of 14 (28.6%) were uniformly diploid. Of the 70 analysed blastomeres, 55.7% were diploid and 44.3% had chromosomal abnormalities, while 29% of the abnormal cells carried structural aberrations. WIDER IMPLICATIONS OF THE FINDINGS Finding such a high rate of aneuploidy and mosaicism in excellent quality embryos from cycles with a high implantation rate warrants further research on the origin and significance of chromosomal abnormalities in human preimplantation embryos. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the Instituut voor de aanmoediging van innovatie door Wetenschap en Technologie in Vlaanderen (IWT-Vlaanderen). A.M. is a PhD student at the IWT-Vlaanderen. C.S. is a postdoctoral fellow at the FWO Vlaanderen. There are no competing interests.


European Journal of Human Genetics | 2006

The interface between assisted reproductive technologies and genetics: technical, social, ethical and legal issues

Sirpa Soini; Dolores Ibarreta; Violetta Anastasiadou; Ségolène Aymé; Suzanne Braga; Martina C. Cornel; Domenico Coviello; Gerry Evers-Kiebooms; Joep Geraedts; Luca Gianaroli; Joyce C. Harper; György Kosztolanyi; K. Lundin; Emilio Rodrigues-Cerezo; Karen Sermon; Jorge Sequeiros; Lisbeth Tranebjærg; Helena Kääriäinen

The interface between assisted reproductive technologies (ART) and genetics comprises several sensitive and important issues that affect infertile couples, families with severe genetic diseases, potential children, professionals in ART and genetics, health care, researchers and the society in general. Genetic causes have a considerable involvement in infertility. Genetic conditions may also be transmitted to the offspring and hence create transgenerational infertility or other serious health problems. Several studies also suggest a slightly elevated risk of birth defects in children born following ART. Preimplantation genetic diagnosis (PGD) has become widely practiced throughout the world for various medical indications, but its limits are being debated. The attitudes towards ART and PGD vary substantially within Europe. The purpose of the present paper was to outline a framework for development of guidelines to be issued jointly by European Society of Human Genetics and European Society of Human Reproduction and Embryology for the interface between genetics and ART. Technical, social, ethical and legal issues of ART and genetics will be reviewed.

Collaboration


Dive into the Karen Sermon's collaboration.

Top Co-Authors

Avatar

I. Liebaers

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Claudia Spits

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inge Liebaers

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Joyce C. Harper

University College London

View shared research outputs
Top Co-Authors

Avatar

M. De Rycke

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Paul Devroey

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

W. Lissens

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge