Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Van Audenhaege is active.

Publication


Featured researches published by Karen Van Audenhaege.


Medical Physics | 2012

Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder

Karel Deprez; Stefaan Vandenberghe; Karen Van Audenhaege; Jonas Van Vaerenbergh; Roel Van Holen

PURPOSE The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. METHODS A complex collimator with 20 loftholes with 500 μm diameter pinhole opening was designed and produced (16 mm thick and 70 × 52 mm(2) transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 μm thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. RESULTS The density of the collimator was equal to 17.31 ± 0.10 g∕cm(3) (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 μm. The aperture positions have a mean deviation of 5 μm, the maximum deviation was 174 μm and the minimum deviation was -122 μm. The mean aperture diameter is 464 ± 19 μm. The calculated and measured sensitivity and resolution of point sources at different positions in the field-of-view agree well. The measured and expected attenuation of the three sample pieces are in a good agreement. There was no influence of the 7T magnetic field on the collimator (which is paramagnetic) and minimal distortion was noticed on the MR scan of the uniform phantom. CONCLUSIONS Additive manufacturing is a very promising technique for the production of complex multipinhole collimators and may also be used for producing other complex collimators. The cost of this technique is only related to the amount of powder needed and the time it takes to have the collimator built. The timeframe from design to collimator production is significantly reduced.


Medical Physics | 2015

Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging

Karen Van Audenhaege; Roel Van Holen; Stefaan Vandenberghe; Christian Vanhove; S. Metzler; Stephen C. Moore

In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.


IEEE Transactions on Medical Imaging | 2015

The Evaluation of Data Completeness and Image Quality in Multiplexing Multi-Pinhole SPECT

Karen Van Audenhaege; Christian Vanhove; Stefaan Vandenberghe; Roel Van Holen

Multi-pinhole collimators are often used in pre-clinical SPECT systems because they have a better resolution-sensitivity tradeoff than parallel hole collimators when imaging small objects. Most multi-pinhole collimators are designed to allow no or only a limited amount of overlap between the different pinhole projections because the ambiguity introduced by multiplexing pinholes can result in artifacts. The origin of these artifacts is still not fully understood, but previous research has already shown that data incompleteness could be part of the explanation. Therefore, we developed a method to investigate data completeness in multiplexing multi-pinhole systems and showed that a certain activity distribution can be successfully reconstructed when the nonmultiplexed data is complete or when the overlap can be sufficiently de-multiplexed. We validated this method using computer simulated phantom data of different multiplexing systems. We also studied contrast-to-noise and nonprewhitening matched filter signal-to-noise ratio (NPW-SNR) to compare the image quality in a single pinhole system with multiplexing systems. We found that our method can indeed be used to evaluate data completeness in multiplexing systems and found no artifacts in the systems that had complete data. Sensitivity increased significantly with multiplexing but we found only small, nonsignificant differences in contrast-to-noise ratio. However, the NPW-SNR did slightly improve in the multiplexing setups. We conclude that more multiplexing does not necessarily result in more artifacts and that even a high amount of multiplexing can still result in artifact-free images if the nonmultiplexed data is complete or when the overlap can be sufficiently de-multiplexed.


Magnetic Resonance in Medicine | 2015

Analysis of eddy currents induced by transverse and longitudinal gradient coils in different tungsten collimators geometries for SPECT/MRI integration

Amine M. Samoudi; Karen Van Audenhaege; Günter Vermeeren; Michael Poole; Emmeric Tanghe; Luc Martens; Roel Van Holen; Wout Joseph

We investigated the temporal variation of the induced magnetic field due to the transverse and the longitudinal gradient coils in tungsten collimators arranged in hexagonal and pentagonal geometries with and without gaps between the collimators.


IEEE Transactions on Nuclear Science | 2015

Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

Amine M. Samoudi; Karen Van Audenhaege; Günter Vermeeren; Gregory Verhoyen; Luc Martens; Roel Van Holen; Wout Joseph

Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.


EJNMMI Physics | 2015

Compatibility of metal additive manufactured tungsten collimator for SPECT/MRI integration

Amine M Samudi; Karen Van Audenhaege; Günter Vermeeren; Luc Martens; Roel Van Holen; Wout Joseph

We optimized the MR-compatibility of a novel tungsten collimator, produced with metal additive manufacturing that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the current density due to the gradient field and adapted the collimators by smart design to reduce the induced eddy currents. The z-gradient coil and the collimator were modeled with SEMCAD. The gradient strength was 510 mT/m, the gradient efficiency was about 3.4 mT/m/A. The setup was simulated with a working frequency of 10 kHz. The system consists of 7 identical collimators and digital silicon photomultipliers assembled in a ring. We evaluated the global reduction in current density J (reduction) based on the sum of all current densities in the collimator. We applied the following optimizations on the collimator: 1. We reduced the excessive material in the flanges. 2. We applied horizontal slits of 2 mm in the collimator surface. 3. We reduced material in the core; the photons are attenuated before they reach the core. The collimator will need a supporting structure. 4. The supporting structure can be avoided by using two vertical slits in the middle of the collimator. 5. We used a Z-shaped slit instead of the vertical slit. Results of simulations show that smaller flanges reduce the current density with 23%. The horizontal slits reduce the eddy currents with 6%. Using less material in the core or applying vertical slits results in the same reduction of current density. However, the vertical slits are cheaper because a hollow collimator requires supporting structures during production. Both can be combined if z-shaped slits are used to prevent attenuation problems. The reduction is then 27%. Finally, when all previous adaptations are combined, the reduction in eddy currents is about 56.3%.


EJNMMI Physics | 2014

Temporal analysis of Z-Gradient coil eddy currents in tungsten collimator with different resistivities for SPECT/MRI

Amine M. Samoudi; Karen Van Audenhaege; Günter Vermeeren; Micahel Poole; Luc Martens; Roel Van Holen; Wout Joseph

Combining Single Photon Emission Computed Tomography (SPECT) with Magnetic Resonance Imaging (MRI) results in an interaction of the time-varying magnetic field gradients with the highly conducting tungsten collimator, which generates a secondary magnetic field causing spatial distortions in reconstructed MR images. Accurate simulations are important for the characterization of these eddy currents and to further optimize the gradient coils and the collimator design. This study investigated the temporal variations of eddy currents in a tungsten collimator for pre-clinical SPECT/MRI due to only the z-gradient coil for different resistivities of tungsten, which can be obtained through additive manufacturing. We modeled a z-gradient coil and a collimator using FEKO, a 3D electromagnetic simulation tool. A time analysis approach was used to generate the pulsed magnetic field gradient. The approach was validated with measurements using a 7T MRI scanner. Simulations show that when tungsten with high resistivity (ρ=370 nΩ.m) is used, eddy currents generate an added magnetic field representing 1.72 % of the nominal gradient field in a Field Of View (FOV) of 3 cm. This percentage increases rapidly for tungsten with lower resistivities, which was expected since a higher resistivity implies lower current densities. A higher density of tungsten is preferred leading to low resistivity but results in stronger induced eddy currents. A compromise needs to be made between the eddy currents strength and the design of the collimator. Using the insights gained from these simulations, the next step is to optimize the design of the gradient coils and the collimator to further reduce the eddy current effects.


nuclear science symposium and medical imaging conference | 2012

Time-multiplexing using a static full-ring multi-pinhole collimator for brain SPECT

Karen Van Audenhaege; Bert Vandeghinste; Stefaan Vandenberghe; Roel Van Holen

In clinical practice, brain SPECT is usually performed using a dual-head SPECT scanner with fan-beam or parallel-beam collimators rotating around the patients head. The resolution of such a system is typically around 8-10 mm. We designed a SPECT system based on a full ring of detectors with a stationary multi-pinhole collimator. The spatial resolution of this brain imaging system is 6 mm. The system is adaptive in the sense that it can be used with different degrees of multiplexing by selecting the number of pinholes that are opened at the same time. The opening and closing of pinholes is controlled with a shutter mechanism. In this study we investigated the potential of combining multiplexed and non-multiplexed data (called time-multiplexing) to increase the sensitivity and the image quality of the system. We simulated and reconstructed a uniform phantom to assess the presence of artifacts, a contrast phantom to quantify the potential improvement in image quality and a Hoffman phantom for visual assessment. We compared different acquisition setups: without multiplexing, with only multiplexing and with time-multiplexing. The reconstructed images with only multiplexed data show severe artifacts. These were reduced by using time-multiplexing and were completely eliminated by using a body support (BS). The simulations of the contrast phantom show an improved image quality for time-multiplexing with BS (5% improvement in CRC at 58% noise compared to non-multiplexed data with BS).


ieee nuclear science symposium | 2011

Design of a static full-ring multi-pinhole collimator for brain SPECT

Karen Van Audenhaege; Roel Van Holen; Karel Deprez; Joel S. Karp; S. Metzler; Stefaan Vandenberghe

In clinical practice, brain SPECT is mostly performed using a dual-head SPECT scanner with fan-beam or parallel-beam collimators rotating around the patients head. The resolution of such a system is typically about 6-8 mm, which is rather poor to image the complex structures of the human brain. We developed a non-rotating multi-pinhole collimator for brain SPECT imaging with a resolution of 4 mm. A full-ring geometry allows for complete transaxial sampling. This enables the use of a stationary collimator. The collimator is a tungsten ring with two rows of pinholes. Each pinhole can individually be opened or closed with shutters. A sequence of shutter movements is performed to obtain an acquisition setup that simulates a rotational movement. The collimator is designed for the LaPET system (a PET detector ring made of 24 LaBr3 detectors) and is optimized to maximize the system performance, resulting in a collimator radius of 145 mm and a pinhole diameter of 2 mm. This system has a sensitivity that is 4 times lower than a dual-head system with LEHR parallel-beam collimators. However, the resolution is 2 times better, a trade-off that is supported by Muehllehner [1]. Monte-Carlo simulated projections of a resolution phantom are successfully reconstructed and the resulting image shows that a resolution of 4 mm is indeed achieved.


Medical Physics | 2015

Collimator design for a multipinhole brain SPECT insert for MRI

Karen Van Audenhaege; Roel Van Holen; Christian Vanhove; Stefaan Vandenberghe

PURPOSE Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. METHODS The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. RESULTS The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations show sufficient axial sampling (in a Defrise phantom) and a reconstructed resolution of 5.0 mm (in a cold-rod phantom). The authors compared the 24-pinhole setup with a 34-pinhole system (with the same detector radius but a collimator radius of 156.63 mm) and found that 34 pinholes result in better uniformity but a worse reconstruction of the cold-rod phantom. The authors also compared the 24-pinhole system with a clinical triple-head UHR fan beam system based on contrast-to-noise ratio and found that the 24-pinhole setup performs better for the 6 mm hot and the 16 mm cold lesions and worse for the 8 and 10 mm hot lesions. Finally, the authors reconstructed noisy projection data of a Hoffman phantom with a 9 mm cold lesion and found that the lesion was slightly better visible on the multipinhole image compared to the fan beam image. CONCLUSIONS The authors have optimized a stationary multipinhole SPECT insert for MRI and showed the feasibility of doing brain SPECT imaging inside a MRI with an image quality similar to the best clinical SPECT systems available.

Collaboration


Dive into the Karen Van Audenhaege's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefaan Vandenberghe

Research Foundation - Flanders

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge