Karen Wallace
Newcastle University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen Wallace.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2009
Roben G. Gieling; Karen Wallace; Yuan Ping Han
Interleukin-1 (IL-1) is rapidly expressed in response to tissue damage; however, its role in coordinating the progression from injury to fibrogenesis is not fully understood. Liver fibrosis is a consequence of the activation of hepatic stellate cells (HSCs), which reside within the extracellular matrix (ECM) of subsinusoids. We have hypothesized that, among the hepatic inflammatory cytokines, IL-1 may directly activate HSCs through autocrine signaling and stimulate the matrix metalloproteinases (MMPs) produced by HSCs within the space of Disse, resulting in liver fibrogenesis. In this study, we first established a temporal relationship between IL-1, MMPs, HSC activation, and early fibrosis. The roles of IL-1 and MMP-9 in HSC activation and fibrogenesis were determined by mice deficient of these genes. After liver injury, IL-1, MMP-9, and MMP-13 levels were found to be elevated before the onset of HSC activation and fibrogenesis. IL-1 receptor-deficient mice exhibited ameliorated liver damage and reduced fibrogenesis. Similarly, advanced fibrosis, as determined by type-I and -III collagen mRNA expression and fibrotic septa, was partially attenuated by the deficiency of IL-1. In the early phase of liver injury, the MMP-9, MMP-13, and TIMP-1 expression correlated well with IL-1 levels. In injured livers, MMP-9 was predominantly colocalized to desmin-positive cells, suggesting that HSCs are MMP-producing cells in vivo. MMP-9-deficient mice were partially protected from liver injury and HSC activation. Thus IL-1 is an important participant, along with other cytokines, and controls the progression from liver injury to fibrogenesis through activation of HSCs in vivo.
Journal of Hepatology | 2008
Angela Douglass; Karen Wallace; Rebecca Parr; Jennifer Park; Elaine Durward; Ian D. Broadbent; Caroline Barelle; Andrew Porter; Matthew Wright
BACKGROUND/AIMS Myofibroblast apoptosis promotes the resolution of liver fibrosis. However, retaining macrophages may enhance reversal. The effects of specifically stimulating myofibroblast apoptosis in vivo were assessed. METHODS A single chain antibody (C1-3) to an extracellular domain of a myofibroblast membrane protein was injected as a fluorescent- or gliotoxin conjugate into mice with liver fibrosis. RESULTS C1-3 specifically targeted alpha-smooth muscle actin positive liver myofibroblasts within scar regions of the liver in vivo and did not co-localise with liver monocytes/macrophages. Injection of free gliotoxin stimulated a 2-fold increase in non-parenchymal cell apoptosis and depleted liver myofibroblasts by 30% and monocytes/macrophages by 50% but had no effect on fibrosis severity in the sustained injury model employed. In contrast, C1-3-targeted gliotoxin stimulated a 5-fold increase in non-parenchymal cell apoptosis, depleted liver myofibroblasts by 60%, did not affect the number of monocytes/macrophages and significantly reduced fibrosis severity. Fibrosis reduction was associated with increased metalloproteinase-13 levels. CONCLUSIONS These data demonstrate that specific targeting of liver myofibroblast apoptosis is the most effective anti-fibrogenic therapy, supporting a role for liver monocytes and/or macrophages in the promotion of liver fibrosis reduction.
Journal of Hepatology | 2008
Martha Watson; Karen Wallace; Roben G. Gieling; Derek Manas; Ellis Jaffray; Ronald T. Hay; Derek A. Mann; Fiona Oakley
BACKGROUND/AIMS Hepatic myofibroblast activation during injury causes deposition of extracellular matrix within the liver and promotes development of fibrosis. Hepatic myofibroblast apoptosis is associated with remodelling of fibrotic extracellular matrix and regression of fibrosis. Previous work showed that inhibition of constitutive NF-kappaB signaling promotes hepatic myofibroblast apoptosis and resolution of fibrosis in rodent models. However, to date agents used to target constitutive NF-kappaB transcriptional activity in hepatic myofibroblasts have been relatively non-specific with potential for off-target effects that may complicate data interpretation. Likewise, rat chronic liver disease models may not accurately recapitulate the activation of human hepatic myofibroblasts. METHODS We used a mutant recombinant IkappaBalpha super-repressor fused to the HIV-TAT domain to specifically target NF-kappaB signaling in hepatic myofibroblasts. Inhibition of NF-kappaB activity was measured using reporter assay. Apoptosis of hepatic myofibroblasts was assessed by morphological changes, cleavage of the PARP-1 protein and Caspase 3 activation. RESULTS TAT-IkappaBalphaSR reduced NF-kappaB dependent transcription, Bcl-2 expression and promoted Jun-N-terminal kinase-dependent apoptosis in human and rat hepatic myofibroblasts. CONCLUSIONS These data highlight the conserved role of NF-kappaB during fibrogenesis. Our data validate the use of rodent models for pre-clinical testing of NF-kappaB inhibitors as anti-fibrotics and stimulators of fibrotic extracellular matrix remodelling.
Journal of Cell Science | 2010
Karen Wallace; Carylyn J. Marek; Stefan Hoppler; Matthew Wright
Developmentally, the pancreas and liver are closely related and pathological conditions – including elevated glucocorticoid levels – result in the appearance of hepatocytes in the pancreas. The role of the WNT signalling pathway in this process has been examined in the model transdifferentiating pancreatic acinar AR42J-B-13 (B-13) cell. Glucocorticoid treatment resulted in a transient loss of constitutive WNT3a expression, phosphorylation and depletion of β-catenin, loss of β-catenin nuclear localisation, and significant reductions in T-cell factor/lymphoid enhancer factor (Tcf/Lef) transcriptional activity before overt changes in phenotype into hepatocyte-like (B-13/H) cells. A return to higher Tcf/Lef transcriptional activity correlated with the re-expression of WNT3a in B-13/H cells. β-catenin knock down alone substituted for and enhanced glucocorticoid-dependent transdifferentiation. Overexpression of a mutant β-catenin (pt-Xβ-cat) protein that blocked glucocorticoid-dependent suppression of Tcf/Lef activity resulted in inhibition of transdifferentiation. A small-molecule activator of Tcf/Lef transcription factors blocked glucocorticoid-dependent effects, as observed with pt-Xβ-cat expression. Quercetin – a Tcf/Lef inhibitor – did not promote transdifferentiation into B-13/H cells, but did potentiate glucocorticoid-mediated transdifferentiation. These data demonstrate that the transdifferentiation of B-13 cells into hepatocyte-like cells in response to glucocorticoid was dependent on the repression of constitutively active WNT signalling.
Toxicology | 2010
Karen Wallace; Emma A. Fairhall; Keith A. Charlton; Matthew Wright
Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.
American Journal of Pathology | 2010
Karen Wallace; Paul Flecknell; Alastair D. Burt; Matthew Wright
Glucocorticoids are antiinflammatory therapeutics that have potent effects on cell differentiation. The aim of this study was to establish whether systemic glucocorticoid exposure significantly affects pancreatic differentiation in vivo because hepatocyte-like cells have been documented to occur in the diseased rodent pancreas. Expression of hepatic markers was examined in pancreata from mice genetically modified to secrete elevated circulating endogenous glucocorticoid [Tg(Crh)]. Tg(Crh) mice with elevated glucocorticoid appeared cushingoid and by 21 weeks of age were obese, insulin-resistant, and had extensive areas of hepatic gene expression in exocrine tissue. Acinar cells from Tg(Crh) mice costained for both amylase and cyp2e1, suggesting direct acinar-hepatic transdifferentiation. Hepatic expression increased with age in the pancreas to such an extent that malabsorption and rapid weight loss occurred in a subset of aging mice; this effect was reversed by dietary porcine pancreatic enzyme supplementation. Indeed, pancreatic expression of hepatic markers was prevented by adrenalectomy, establishing a direct role for glucocorticoid. Elevated levels of circulating glucocorticoid therefore promote a transdifferentiation of adult exocrine pancreas into hepatocyte-like cells, and chronic exposure results in pancreatic malfunction. Glucocorticoids are thus capable of modulating the differentiation of terminally differentiated adult cells.
Journal of Cell Science | 2011
Karen Wallace; Quan Long; Emma A. Fairhall; Keith A. Charlton; Matthew Wright
Elevated glucocorticoid levels result in the transdifferentiation of pancreatic acinar cells into hepatocytes through a process that requires a transient repression of WNT signalling upstream of the induction of C/EBP-β. However, the mechanism by which glucocorticoid interacts with WNT signalling is unknown. A screen of microarray data showed that the serine/threonine protein kinase SGK1 (serum- and glucocorticoid-regulated kinase 1) was markedly induced in the model B-13 pancreatic rat acinar cell line after glucocorticoid treatment (which converts them into hepatocyte-like ‘B-13/H’ cells) and this was confirmed at the level of mRNA (notably an alternatively transcribed SGK1C form) and protein. Knockdown of SGK1 using an siRNA designed to target all variant transcripts inhibited glucocorticoid-dependent transdifferentiation, whereas overexpression of the human C isoform (and also the human SGK1F isoform, for which no orthologue in the rat has been identified) alone – but not the wild-type A form – inhibited distal WNT signalling Tcf/Lef transcription factor activity, and converted B-13 cells into B-13/H cells. These effects were lost when the kinase functions of SGK1C and SGK1F were mutated. Inhibition of SGK1 kinase activity also inhibited glucocorticoid-dependent transdifferentiation. Expression of SGK1C and SGK1F resulted in the appearance of phosphorylated β-catenin, and recombinant SGK1 was shown to directly phosphorylate purified β-catenin in vitro in an ATP-dependent reaction. These data therefore demonstrate a crucial role for SGK1 induction in B-13 cell transdifferentiation to B-13/H hepatocytes and suggest that direct phosphorylation of β-catenin by SGK1C represents the mechanism of crosstalk between glucocorticoid and WNT signalling pathways.
FEBS Letters | 2007
Carylyn J. Marek; Steven J. Tucker; Matthew Koruth; Karen Wallace; Matthew Wright
Activated stellate cells are myofibroblast‐like cells associated with the generation of fibrotic scaring in chronically damaged liver. Gene chip analysis was performed on cultured fibrotic stellate cells. Of the 51 human CYP genes known, 13 CYP and 5 CYP reduction‐related genes were detected with 4 CYPs (CYP1A1, CYP2E1, CY2S1 and CYP4F3) consistently present in stellate cells isolated from three individuals. Quantitative RT‐PCR indicated that CYP2S1 was a major expressed CYP mRNA transcript. The presence of a CYP2A‐related protein and testosterone metabolism in stellate cell cultures suggest that stellate cells express specific functional isoforms of CYP of which a major form is CYP2S1.
Toxicology Research | 2013
Emma A. Fairhall; Michelle Charles; Karen Wallace; Claire Schwab; Christine J. Harrison; Marco Richter; Stefan A. Hoffmann; Keith A. Charlton; Katrin Zeilinger; Matthew Wright
The rat pancreatic “B-13” acinar cell is a stable progenitor cell line that differentiates into hepatocyte-like cells (B-13/H cells) in 2D un-coated plastic culture with simple culture media in response to glucocorticoid exposure. Examination of cytochrome P450 indicated that the expression of a range of genes were similar to freshly isolated hepatocytes and that these gene products were functional on the basis of spectrophotometrically-detectable reduced carbon-monoxide haemoprotein and metabolism of several drugs. Since normal hepatocytes readily de-differentiate under similar conditions, we hypothesized that B-13 cells have undergone a variety of alterations that stabilise a progenitor phenotype and restrict differentiation to hepatocytes only (which if capitulated in human cells, could generate a readily accessible supply of functional human hepatocytes in vitro). To examine this hypothesis, the B-13 karyotype; pluripotency-inducing transcription factor expression and forced over-expression of these factors in B-13 cells were examined. B-13 cells were also injected into NOD/SCID mice and engraftment and differentiation assessed by RT-PCR, Western blotting, immunohistochemistry and fluorescent in situ hybridization (FISH). B-13 cells expressed four pluripotency-inducing transcription factors c-Myc, Klf4, Oct4 and Sox2 with only c-Myc expression maintained after glucocorticoid treatment. Over-expression of the pluripotency-inducing transcription factors blocked B-13/H formation in response to glucocorticoid. Injection of B-13 cells into NOD/SCID mice resulted in their engraftment to the pancreas and liver, with restricted differentiation to hepatocytes in the liver. The cells did not engraft to any other tissues examined. The ability of B-13 cells to specifically generate functional hepatocytes in vitro in response to glucocorticoid is therefore associated with genetic rearrangements that may facilitate expression of genes associated with plasticity (without leading to pluripotency), which are repressed by glucocorticoid treatment.
Comparative Hepatology | 2009
Carylyn J. Marek; Karen Wallace; Elaine Durward; Matthew Koruth; Val Leel; Lucy J. Leiper; Matthew Wright
BackgroundPregnane X receptor (PXR) agonists inhibit liver fibrosis. However, the rodent PXR activator pregnenolone 16α carbonitrile (PCN) blocks, in vitro, hepatic stellate cell-to-myofibroblast trans-differentiation and proliferation in cells from mice with a disrupted PXR gene, suggesting there is an additional anti-fibrogenic drug target for PCN. The role of the low affinity glucocorticoid binding site (LAGS) – which may be identical or associated with the progesterone receptor membrane component 1 (PGRMC1) – in mediating this anti-fibrogenic effect has been examined, since binding of dexamethasone to the LAGS in liver microsomal membranes has previously been shown to be inhibited by PCN.ResultsQuiescent rat and human hepatic stellate cells (HSC) were isolated from livers and cultured to generate liver myofibroblasts. HSC and myofibroblasts expressed PGRMC1 as determined by RT-PCR and Western blotting. Quiescent rat HSC also expressed the truncated HC5 variant of rPGRMC1. Rat PGRMC1 was cloned and expression in COS-7 cells gave rise to specific binding of radiolabelled dexamethasone in cell extracts that was inhibited by PCN, suggesting that PGRMC1 may be identical to LAGS or activates LAGS binding activity. Liver microsomes were used to screen a range of structurally related compounds for their ability to inhibit radiolabelled dexamethasone binding to rat LAGS. These compounds were also screened for their ability to activate rat and human PXR and to inhibit rat HSC-to-myofibroblast trans-differentiation/proliferation. A compound (4 androstene-3-one 17β-carboxylic acid methyl ester) was identified which bound rat LAGS with high affinity and inhibited both rat and human HSC trans-differentiation/proliferation to fibrogenic myofibroblasts without showing evidence of rat or human PXR agonism. However, despite potent anti-fibrogenic effects in vitro, this compound did not modulate liver fibrosis severity in a rat model of liver fibrosis. Immunohistochemical analysis showed that rat liver myofibroblasts in vivo did not express rPGRMC1.ConclusionLAGS ligands inhibit HSC trans-differentiation and proliferation in vitro but show little efficacy in inhibiting liver fibrosis, in vivo. The reason(s) for this disparity is/are likely associated with an altered myofibroblast phenotype, in vitro, with expression of rPGMRC1 in vitro but not in vivo. These data emphasize the limitations of in vitro-derived myofibroblasts for predicting their activity in vivo, in studies of fibrogenesis. The data also demonstrate that the anti-fibrogenic effects of PCN in vivo are likely mediated entirely via the PXR.