Kari A. Johnson
Vanderbilt University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kari A. Johnson.
Cns & Neurological Disorders-drug Targets | 2009
Kari A. Johnson; P. Jeffrey Conn; Colleen M. Niswender
Parkinsons disease (PD) is a neurodegenerative disorder characterized by motor symptoms including tremor and bradykinesia. The primary pathophysiology underlying PD is the degeneration of dopaminergic neurons of the substantia nigra pars compacta. Loss of these neurons causes pathological changes in neurotransmission in the basal ganglia motor circuit. The ability of ionotropic and metabotropic glutamate receptors to modulate neurotransmission throughout the basal ganglia suggests that these receptors may be targets for reversing the effects of altered neurotransmission in PD. Studies in animal models suggest that modulating the activity of these receptors may alleviate the primary motor symptoms of PD as well as side effects induced by dopamine replacement therapy. Moreover, glutamate receptor ligands may slow disease progression by delaying progressive dopamine neuron degeneration. Antagonists of NMDA receptors have shown promise in reversing motor symptoms, levodopa-induced dyskinesias, and neurodegeneration in preclinical PD models. The effects of drugs targeting AMPA receptors are more complex; while antagonists of these receptors exhibit utility in the treatment of levodopa-induced dyskinesias, AMPA receptor potentiators show promise for neuroprotection. Pharmacological modulation of metabotropic glutamate receptors (mGluRs) may hold even more promise for PD treatment due to the ability of mGluRs to fine-tune neurotransmission. Antagonists of mGluR5, as well as activators of group II mGluRs and mGluR4, have shown promise in several animal models of PD. These drugs reverse motor deficits in addition to providing protection against neurodegeneration. Glutamate receptors therefore represent exciting targets for the development of novel pharmacological therapies for PD.
Molecular Pharmacology | 2008
Colleen M. Niswender; Kari A. Johnson; C. David Weaver; Carrie K. Jones; Zixiu Xiang; Qingwei Luo; Alice L. Rodriguez; Joy E. Marlo; Tomas de Paulis; Analisa D. Thompson; Emily Days; Tasha Nalywajko; Cheryl A. Aust; Michael Baxter Williams; Jennifer E. Ayala; Richard Williams; Craig W. Lindsley; P. Jeffrey Conn
Parkinsons disease (PD) is caused by the death of dopamine neurons in the basal ganglia and results in motor symptoms such as tremor and bradykinesia. Activation of metabotropic glutamate receptor 4 (mGluR4) has been shown to modulate neurotransmission in the basal ganglia and results in antiparkinsonian effects in rodent PD models. N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) is a positive allosteric modulator (PAM) of mGluR4 that has been used to further validate the role of mGluR4 in PD, but the compound suffers from a lack of selectivity, relatively low potency, and poor solubility. Via high-throughput screening, we discovered more than 400 novel PAMs of mGluR4. Compounds derived from a novel chemical scaffold were characterized in vitro at both rat and human mGluR4 using two distinct assays of mGluR4 function. The lead compound was approximately 8-fold more potent than PHCCC, enhanced the potency of glutamate at mGluR4 by 8-fold, and did not show any significant potentiator or antagonist activity at other mGluR subtypes. Resolution of the regioisomers of the lead revealed that the cis regioisomer, (±)-cis-2-(3,5-dichlorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), contained the majority of the mGluR4 PAM activity and also exhibited partial agonist activity at mGluR4 at a site that was distinct from the glutamate binding site, suggesting that this compound is a mixed allosteric agonist/PAM of mGluR4. VU0155041 was soluble in an aqueous vehicle, and intracerebroventricular administration of 31 to 316 nmol of VU0155041 dose-dependently decreased haloperidol-induced catalepsy and reserpine-induced akinesia in rats. These exciting results provide continued support for mGluR4 as a therapeutic target in PD.
Molecular Pharmacology | 2008
Colleen M. Niswender; Kari A. Johnson; Qingwei Luo; Jennifer E. Ayala; Kim C; P.J. Conn; Charles David Weaver
The group III metabotropic glutamate receptors (mGluRs) represent a family of presynaptically expressed G-protein-coupled receptors (GPCRs) with enormous therapeutic potential; however, robust cellular assays to study their function have been difficult to develop. We present here a new assay, compatible with traditional high-throughput screening platforms, to detect activity of pharmacological ligands interacting with Gi/o-coupled GPCRs, including the group III mGluRs 4, 7, and 8. The assay takes advantage of the ability of the Gβγ subunits of Gi and Go heterotrimers to interact with G-protein regulated inwardly rectifying potassium channels (GIRKs), and we show here that we are able to detect the activity of multiple types of pharmacophores including agonists, antagonists, and allosteric modulators of several distinct GPCRs. Using GIRK-mediated thallium flux, we perform a side-by-side comparison of the activity of a number of commercially available compounds, some of which have not been extensively evaluated because of the previous lack of robust assays at each of the three major group III mGluRs. It is noteworthy that several compounds previously considered to be general group III mGluR antagonists have very weak activity using this assay, suggesting the possibility that these compounds may not effectively inhibit these receptors in native systems. We anticipate that the GIRK-mediated thallium flux strategy will provide a novel tool to advance the study of Gi/o-coupled GPCR biology and promote ligand discovery and characterization.
Molecular Pharmacology | 2010
Colleen M. Niswender; Kari A. Johnson; Nicole R. Miller; Jennifer E. Ayala; Qingwei Luo; Richard Williams; Samir Saleh; Darren Orton; C. David Weaver; P. Jeffrey Conn
Phenotypic studies of mice lacking metabotropic glutamate receptor subtype 7 (mGluR7) suggest that antagonists of this receptor may be promising for the treatment of central nervous system disorders such as anxiety and depression. Suzuki et al. (J Pharmacol Exp Ther 323:147–156, 2007) recently reported the in vitro characterization of a novel mGluR7 antagonist called 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[ 4,5-c]pyridin-4(5H)-one (MMPIP), which noncompetitively inhibited the activity of orthosteric and allosteric agonists at mGluR7. We describe that MMPIP acts as a noncompetitive antagonist in calcium mobilization assays in cells coexpressing mGluR7 and the promiscuous G protein Gα15. Assessment of the activity of a small library of MMPIP-derived compounds using this assay reveals that, despite similar potencies, compounds exhibit differences in negative cooperativity for agonist-mediated calcium mobilization. Examination of the inhibitory activity of MMPIP and analogs using endogenous Gi/o-coupled assay readouts indicates that the pharmacology of these ligands seems to be context-dependent, and MMPIP exhibits differences in negative cooperativity in certain cellular backgrounds. Electrophysiological studies reveal that, in contrast to the orthosteric antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxyclycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), MMPIP is unable to block agonist-mediated responses at the Schaffer collateral-CA1 synapse, a location at which neurotransmission has been shown to be modulated by mGluR7 activity. Thus, MMPIP and related compounds differentially inhibit coupling of mGluR7 in different cellular backgrounds and may not antagonize the coupling of this receptor to native Gi/o signaling pathways in all cellular contexts. The pharmacology of this compound represents a striking example of the potential for context-dependent blockade of receptor responses by negative allosteric modulators.
The Journal of Neuroscience | 2014
Shen Yin; Meredith J. Noetzel; Kari A. Johnson; Rocio Zamorano; Jalan-Sakrikar N; Karen J. Gregory; Conn Pj; Colleen M. Niswender
Metabotropic glutamate (mGlu) receptors play important roles in regulating CNS function and are known to function as obligatory dimers. Although recent studies have suggested heterodimeric assembly of mGlu receptors in vitro, the demonstration that distinct mGlu receptor proteins can form heterodimers or hetero-complexes with other mGlu subunits in native tissues, such as neurons, has not been shown. Using biochemical and pharmacological approaches, we demonstrate here that mGlu2 and mGlu4 form a hetero-complex in native rat and mouse tissues which exhibits a distinct pharmacological profile. These data greatly extend our current understanding of mGlu receptor interaction and function and provide compelling evidence that mGlu receptors can function as heteromers in intact brain circuits.
Bioorganic & Medicinal Chemistry Letters | 2009
Richard Williams; Kari A. Johnson; Patrick R. Gentry; Colleen M. Niswender; Charles David Weaver; P. Jeffrey Conn; Craig W. Lindsley; Corey R. Hopkins
This Letter describes the synthesis and SAR of the novel positive allosteric modulator, VU0155041, a compound that has shown in vivo efficacy in rodent models of Parkinsons disease. The synthesis takes advantage of an iterative parallel synthesis approach to rapidly synthesize and evaluate a number of analogs of VU0155041.
Neuroscience Letters | 2011
Kari A. Johnson; Colleen M. Niswender; P. Jeffrey Conn; Zixiu Xiang
Activation of group II metabotropic glutamate receptors (mGlu2 and mGlu3) has been implicated as a potential therapeutic strategy for treating both motor symptoms and progressive neurodegeneration in Parkinsons disease (PD). Modulation of excitatory transmission in the basal ganglia represents a possible mechanism by which group II mGlu agonists could exert antiparkinsonian effects. Previous studies have identified reversible effects of mGlu2/3 activation on excitatory transmission at various synapses in the basal ganglia, including the excitatory synapse between the subthalamic nucleus (STN) and the substantia nigra pars reticulata (SNr). Using whole-cell patch clamp studies of GABAergic SNr neurons in rat midbrain slices, we have found that a prolonged activation of group II mGlus by the selective agonist LY379268 induces a long-term depression (LTD) of evoked excitatory postsynaptic current (EPSC) amplitude. Bath application of LY379268 (100nM, 10min) induced a marked reduction in EPSC amplitude, and excitatory transmission remained depressed for at least 40min after agonist washout. The effect of LY379268 was concentration-dependent and was completely blocked by the group II mGlu-preferring antagonist LY341495 (500nM). To determine the relative contributions of mGlu2 and mGlu3 to the LTD induced by LY379268, we tested the ability of LY379268 (100nM) to induce LTD in wild type mice and mice lacking mGlu2 or mGlu3. LY379268 induced similar LTD in wild type mice and mGlu3 knockout mice, whereas LTD was absent in mGlu2 knockout mice, indicating that mGlu2 activation is necessary for the induction of LTD in the SNr. These studies suggest a novel role for mGlu2 in the long-term regulation of excitatory transmission in the SNr and invite further exploration of mGlu2 as a therapeutic target for treating the motor symptoms of PD.
Synapse | 2011
M. N. Tantawy; Todd E. Peterson; Carrie K. Jones; Kari A. Johnson; Jerri M. Rook; P. Jeffrey Conn; Ronald M. Baldwin; M. Sib Ansari; Robert M. Kessler
In the previous work, we reported a method that utilized imaging data collected from 60 to 120 min following [18F]fallypride administration to estimate the distribution volume ratio DVR′ (DVR′ ∝ DVR; DVR = 1 + BPND, where BPND is a measure of receptor density, DA D2 in this case). In this work, we use this method to assess the effects of isoflurane anesthesia on [18F]fallypride DVR′. Methods: Rats were injected with [18F]fallypride either unconsciously under ∼1.5% isoflurane via the tail vein (Group 1) or consciously via a catheter inserted either in the jugular vein (Group 2) or the tail vein (Group 3). After about 1 h of free access to food and water the rats were anesthetized with 1.5% isoflurane and imaged in a microPET for 60 min. The rats that were injected consciously (Groups 2 and 3) were placed in a rat restrainer during [18F]fallypride injection. They were habituated in that restrainer for 3 days prior to the experiment day to minimize restraint‐related stress. For comparison, a control group of rats was imaged for 120 min simultaneously with the administration of [18F]fallypride i.v. while under 1.5% isoflurane. The DVR′ estimates from the 60 min acquisitions were compared with the DVR′ from the last 60 min of the 120 min acquisitions (after neglecting the first 60 min). In addition, the striatal time–activity curves were fit with a 2‐tissue + plasma compartment model using an arbitrary simulated plasma input function to obtain k3/k4 (≈ BPND) for the 60 and 120 min acquisitions. Results: Isoflurane anesthesia caused a significant reduction, up to 22%, in the DVR′ estimates, which were 15.7 ± 0.3 (mean ± SE) for the controls, 17.7 ± 0.3 for Group 1, 19.2 ± 0.4 for Group 2, and 18.8 ± 0.7 for Group 3. The compartmental model fit produced similar results, ∼30% reduction in k3/k4 for the 120‐min acquisitions compared with the 60‐min acquisitions (initial conscious uptake of the radiotracer). Conclusion: The results of this study demonstrate that isoflurane anesthesia significantly decreases striatal [18F]fallypride BPND in rats. Of similar importance, this work demonstrates the effectiveness of delayed scans following radiotracer injection and the implication that different types of studies can be conducted simultaneously with this method, including studies of behavioral and environmental impact on brain receptors. Synapse, 2011.
Nature Chemical Biology | 2008
Jana K. Shirey; Zixiu Xiang; Darren Orton; Ashley E. Brady; Kari A. Johnson; Richard Williams; Jennifer E. Ayala; Alice L. Rodriguez; Jürgen Wess; David Weaver; Colleen M. Niswender; P. Jeffrey Conn
Neuron | 2015
Jerri M. Rook; Zixiu Xiang; Xiaohui Lv; Ayan Ghoshal; Jonathan W. Dickerson; Thomas M. Bridges; Kari A. Johnson; Daniel J. Foster; Karen J. Gregory; Paige N. Vinson; Analisa D. Thompson; Nellie Byun; Rebekah L. Collier; Michael Bubser; Michael T. Nedelcovych; Robert W. Gould; Shaun R. Stauffer; J. Scott Daniels; Colleen M. Niswender; Hilde Lavreysen; Claire Mackie; Susana Conde-Ceide; Jesús Alcázar; José Manuel Bartolomé-Nebreda; Gregor James Macdonald; John Talpos; Thomas Steckler; Carrie K. Jones; Craig W. Lindsley; P. Jeffrey Conn