Kari A. Segraves
Syracuse University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kari A. Segraves.
Molecular Ecology | 1999
Kari A. Segraves; John N. Thompson; Pamela S. Soltis; Douglas E. Soltis
Multiple origins of polyploidy from an ancestral diploid plant species were investigated using restriction site polymorphism and sequence variation in the chloroplast DNA (cpDNA) of Heuchera grossulariifolia (Saxifragaceae). Phylogenetic analysis indicated that autopolyploidy has arisen at least twice in the evolutionary history of this species and potentially up to as many as seven times. These results suggest a greater range of independent polyploid origins as compared to a previous study of H. grossulariifolia using cpDNA restriction sites that indicated a minimum of three independent origins. Moreover, most polyploid populations did not contain cpDNA haplotypes from a single origin, but rather combined haplotypes from at least two polyploid origins. Past migration among polyploid populations of independent origin or localized polyploid formation may explain the distribution of polyploid haplotypes within and among populations. The analysis also revealed a discrepancy between relatedness and geographical location. In nearly all sympatric populations of diploids and polyploids, polyploids had the same cpDNA haplotypes as diploids from a geographically remote population. This geographical discordance has several possible explanations, including small sample sizes, extinction of parental diploid haplotypes, chloroplast introgression, and homoplasy in the cpDNA sequence data. We conclude that the recurrent formation of polyploids is an important evolutionary mechanism in the diversification of H. grossulariifolia.
The American Naturalist | 1997
John N. Thompson; Bradley M. Cunningham; Kari A. Segraves; David M. Althoff; Diane Wagner
We used flow cytometry and extensive geographic surveys of herbivore attack to test whether repeated evolution of autotetraploidy in the perennial herb Heuchera grossulariifolia Rydb. (Saxifragaceae) has created evolutionary barriers to attack by the specialist moth herbivore Greya politella (Prodoxidae). We found that the moth has colonized tetraploid as well as diploid populations, has colonized tetraploids of separate evolutionary origin, and, at least under some conditions, is more likely to attack tetraploids than diploids. Plant polyploidy therefore provides a potential route out of specialization as an evolutionary dead end in phytophagous insect taxa as well as a potentially important route to subsequent phylogenetic and geographic diversification of plant/insect interactions.
Systematic Biology | 2007
David M. Althoff; Matthew A. Gitzendanner; Kari A. Segraves
The amplified fragment length polymorphism (AFLP) technique is being increasingly used in phylogenetic studies, especially in groups of rapidly radiating taxa. One of the key issues in the phylogenetic suitability of this technique is whether the DNA fragments generated via the AFLP method are homologous within and among the taxa being studied. We used a bioinformatics approach to assess homology based on both chromosomal location and sequence similarity of AFLP fragments. The AFLP technique was electronically simulated on genomes from eight organisms that represented a range of genome sizes. The results demonstrated that within a genome, the number of fragments is positively associated with genome size, and the degree of homology decreases with increasing numbers of fragments generated. The average homology of fragments was 89% for small genomes (< 400 Mb) but decreased to 59% for large genomes (> 2 Gb). Fragment homology for large genomes can be increased by excluding smaller fragments, although there is no clear upper limit for the size of fragments to exclude. A second approach is to increase the number of selective nucleotides in the final selective amplification step. For strains of the same organism, homology based on chromosome location and sequence similarity of fragments was 100%. Fragment homology for more distantly related taxa, however, decreased with greater time since divergence. We conclude that AFLP data are best suited for examining phylogeographic patterns within species and among very recently diverged species.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Dawn M. Higginson; Kelly B. Miller; Kari A. Segraves; Scott Pitnick
The coevolution of female mate preferences and exaggerated male traits is a fundamental prediction of many sexual selection models, but has largely defied testing due to the challenges of quantifying the sensory and cognitive bases of female preferences. We overcome this difficulty by focusing on postcopulatory sexual selection, where readily quantifiable female reproductive tract structures are capable of biasing paternity in favor of preferred sperm morphologies and thus represent a proximate mechanism of female mate choice when ejaculates from multiple males overlap within the tract. Here, we use phylogenetically controlled generalized least squares and logistic regression to test whether the evolution of female reproductive tract design might have driven the evolution of complex, multivariate sperm form in a family of aquatic beetles. The results indicate that female reproductive tracts have undergone extensive diversification in diving beetles, with remodeling of size and shape of several organs and structures being significantly associated with changes in sperm size, head shape, gains/losses of conjugation and conjugate size. Further, results of Bayesian analyses suggest that the loss of sperm conjugation is driven by elongation of the female reproductive tract. Behavioral and ultrastructural examination of sperm conjugates stored in the female tract indicates that conjugates anchor in optimal positions for fertilization. The results underscore the importance of postcopulatory sexual selection as an agent of diversification.
Proceedings of the Royal Society of London B: Biological Sciences | 2008
Christopher Irwin Smith; Olle Pellmyr; David M. Althoff; Manuel Balcázar-Lara; Jim Leebens-Mack; Kari A. Segraves
The yucca–yucca moth interaction is one of the most well-known and remarkable obligate pollination mutualisms, and is an important study system for understanding coevolution. Previous research suggests that specialist pollinators can promote rapid diversification in plants, and theoretical work has predicted that obligate pollination mutualism promotes cospeciation between plants and their pollinators, resulting in contemporaneous, parallel diversification. However, a lack of information about the age of Yucca has impeded efforts to test these hypotheses. We used analyses of 4322 AFLP markers and cpDNA sequence data representing six non-protein-coding regions (trnT–trnL, trnL, trnL intron, trnL–trnF, rps16 and clpP intron 2) from all 34 species to recover a consensus organismal phylogeny, and used penalized likelihood to estimate divergence times and speciation rates in Yucca. The results indicate that the pollination mutualism did not accelerate diversification, as Yucca diversity (34 species) is not significantly greater than that of its non-moth-pollinated sister group, Agave sensu latissimus (240 species). The new phylogenetic estimates also corroborate the suggestion that the plant–moth pollination mutualism has at least two origins within the Agavaceae. Finally, age estimates show significant discord between the age of Yucca (ca 6–10 Myr) and the current best estimates for the age of their pollinators (32–40 Myr).
Trends in Ecology and Evolution | 2014
David M. Althoff; Kari A. Segraves; Marc T. J. Johnson
Coevolutionary diversification is cited as a major mechanism driving the evolution of diversity, particularly in plants and insects. However, tests of coevolutionary diversification have focused on elucidating macroevolutionary patterns rather than the processes giving rise to such patterns. Hence, there is weak evidence that coevolution promotes diversification. This is in part due to a lack of understanding about the mechanisms by which coevolution can cause speciation and the difficulty of integrating results across micro- and macroevolutionary scales. In this review, we highlight potential mechanisms of coevolutionary diversification, outline approaches to examine this process across temporal scales, and propose a set of minimal requirements for demonstrating coevolutionary diversification. Our aim is to stimulate research that tests more rigorously for coevolutionary diversification.
Molecular Phylogenetics and Evolution | 2012
David M. Althoff; Kari A. Segraves; Christopher Irwin Smith; Jim Leebens-Mack; Olle Pellmyr
Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.
American Journal of Botany | 2013
William Godsoe; Megan A. Larson; Kelsey L. Glennon; Kari A. Segraves
UNLABELLED PREMISE OF THE STUDY Polyploidization is a key factor involved in the diversification of plants. Although polyploids are commonly found, there remains controversy on the mechanisms that lead to their successful establishment. One major problem that has been identified is that newly formed polyploids lack mates of the appropriate ploidy level and may experience severely reduced fertility due to nonproductive intercytotype crosses. Niche differentiation has been proposed as a primary mechanism that can alleviate this reproductive disadvantage and facilitate polyploid establishment. Here we test whether the establishment of tetraploid cytotypes of Heuchera cylindrica (Saxifragaceae) is consistent with climatic niche differentiation. • METHODS We use a combination of field surveys, flow cytometry and species distribution models to: (1) examine the distribution of diploid and tetraploid cytotypes; and (2) determine whether tetraploid Heuchera cylindrica occupy climates that differ from those of its diploid progenitors. • KEY RESULTS The geographic distributions of diploid and tetraploid cytotypes are largely allopatric as an extensive survey of 636 plants from 43 locations failed to detect any populations with both cytotypes. Although diploids and tetraploids occur in different geographic areas, polyploid Heuchera cylindrica occur almost exclusively in environments that are predicted to be suitable to diploid populations. • CONCLUSIONS Climatic niche differentiation does not explain the geographic distribution of tetraploid Heuchera cylindrica. We propose instead that tetraploid lineages were able to establish by taking advantage of glacial retreat and expanding into previously unoccupied sites.
Systematic Entomology | 2005
Olle Pellmyr; Manuel Balcázar-Lara; David M. Althoff; Kari A. Segraves; Jim Leebens-Mack
Abstract. Yucca moths (Lep., Prodoxidae) are well‐known for their obligate pollination mutualism with yuccas. In addition to the pollinators, yuccas also host many non‐pollinating yucca moths. Here the genus Prodoxus, the non‐pollinating sister group of the pollinators, is revised using morphological and molecular data, their phylogenetic relationships are analysed, and the evolution of host tissue specialization explored. Twenty‐two species are recognized, including nine new species: Prodoxus gypsicolorsp.n., P. sonorensissp.n., P. carnerosanellussp.n., P. tamaulipellussp.n., P. weethumpisp.n., P. tehuacanensissp.n., P. californicussp.n., P. mapimiensissp.n. and P. atascosanellussp.n.Prodoxus y‐inversus Riley, P. coloradensis Riley and P. sordidus Riley are redescribed. The genus Agavenema is synonymized with Prodoxus. Phylogenetic analyses indicated that stalk‐feeding is basal within the group, that there are three separate origins of fruit‐feeding, and one origin of leaf‐mining from a stalk‐feeding ancestor. Although species with different feeding habits often coexist within hosts, the analyses suggest that ecological specialization and diversification within a host only may have occurred within one or possibly two hosts.
Evolution | 2004
Kari A. Segraves; Olle Pellmyr
Abstract Mutualistic interactions can be exploited by cheaters that take the rewards offered by mutualists without providing services in return. The evolution of cheater species from mutualist ancestors is thought to be possible under particular ecological conditions. Here we provide a test of the first explicit model of the transition from mutualism to antagonism. We used the obligate pollination mutualism between yuccas and yucca moths to examine the origins of a nonpollinating cheater moth, Tegeticula intermedia, and its pollinating sister species, T. cassandra. Based on geographic distribution and ecological factors affecting the pollinators, previous research had indicated that the cheaters evolved in Florida as a result of sympatry of T. cassandra and another pollinator species. We used mitochondrial DNA (mtDNA) sequences and amplified fragment length polymorphism (AFLP) data to investigate the phylogeographic history of the pollinator‐cheater sister pair and to test whether the cheaters arose in Florida. Contrary to predictions, phylogenetic and population genetic analyses suggested that the cheaters evolved in the western United States and subsequently spread eastward. Western populations of cheaters had the most ancestral haplotypes and the highest genetic diversity, and there was also significant genetic structure associated with a geographic split between eastern and western populations. In comparison, there was evidence for weak genetic structure between northern and southern pollinator populations, suggesting a long history in Florida. The western origin of the cheaters indicated that the pollinators have more recently become restricted to the southeastern United States. This was supported by AFLP analyses that indicated that the pollinators were more closely related to the western cheaters than they were to geographically proximate cheaters in the east. Shared mtDNA between pollinators and eastern cheaters suggested hybridization, possibly in a secondary contact zone. The results negate the out‐of‐Florida hypothesis and reveal instead a long, complex, and disparate history for the pollinator‐cheater sister pair.