Kari Vaahtomeri
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kari Vaahtomeri.
The EMBO Journal | 2010
Nabil Djouder; Roland Tuerk; Marianne Suter; Paolo Salvioni; Ramon F. Thali; Roland W. Scholz; Kari Vaahtomeri; Yolanda Auchli; Helene Rechsteiner; René Brunisholz; Benoit Viollet; Tomi P. Mäkelä; Theo Wallimann; Dietbert Neumann; Wilhelm Krek
The mobilization of metabolic energy from adipocytes depends on a tightly regulated balance between hydrolysis and resynthesis of triacylglycerides (TAGs). Hydrolysis is stimulated by β‐adrenergic signalling to PKA that mediates phosphorylation of lipolytic enzymes, including hormone‐sensitive lipase (HSL). TAG resynthesis is associated with high‐energy consumption, which when inordinate, leads to increased AMPK activity that acts to restrain hydrolysis of TAGs by inhibiting PKA‐mediated activation of HSL. Here, we report that in primary mouse adipocytes, PKA associates with and phosphorylates AMPKα1 at Ser‐173 to impede threonine (Thr‐172) phosphorylation and thus activation of AMPKα1 by LKB1 in response to lipolytic signals. Activation of AMPKα1 by LKB1 is also blocked by PKA‐mediated phosphorylation of AMPKα1 in vitro. Functional analysis of an AMPKα1 species carrying a non‐phosphorylatable mutation at Ser‐173 revealed a critical function of this phosphorylation for efficient release of free fatty acids and glycerol in response to PKA‐activating signals. These results suggest a new mechanism of negative regulation of AMPK activity by PKA that is important for converting a lipolytic signal into an effective lipolytic response.
Nature Genetics | 2008
Pekka Katajisto; Kari Vaahtomeri; Niklas Ekman; Eeva Ventelä; Ari Ristimäki; Nabeel Bardeesy; Robert Feil; Ronald A. DePinho; Tomi P. Mäkelä
Germline mutations in STK11 (also known as LKB1) are found in individuals with Peutz-Jeghers syndrome (PJS) manifesting with gastrointestinal polyps that contain a prominent stromal component. Epithelia in polyps of Stk11+/− mice can retain a functional copy of Stk11 (refs. 2,3), and loss of heterozygosity is not an obligate feature of human polyps, raising the possibility of non-epithelial origins in tumorigenesis. Here we show that either monoallelic or biallelic loss of murine Stk11 limited to Tagln-expressing mesenchymal cells results in premature postnatal death as a result of gastrointestinal polyps indistinguishable from those in PJS. Stk11-deficient mesenchymal cells produced less TGFβ, and defective TGFβ signaling to epithelial cells coincided with epithelial proliferation. We also noted TGFβ signaling defects in polyps of individuals with PJS, suggesting that the identified stromal-derived mechanism of tumor suppression is also relevant in PJS.
FEBS Letters | 2011
Kari Vaahtomeri; Tomi P. Mäkelä
The LKB1 tumor suppressor gene is frequently mutated in sporadic lung adenocarcinomas and cervical cancers and germline mutations are causative for Peutz‐Jeghers syndrome characterized by gastrointestinal polyposis. The intracellular LKB1 kinase is implicated in regulating polarity, metabolism, cell differentiation, and proliferation – all functions potentially contributing to tumor suppression. LKB1 acts as an activating kinase of at least 14 kinases mediating LKB1 functions in a complex signaling network with partial overlaps. Regulation of the LKB1 signaling network is highly context dependent, and spatially organized in various cellular compartments. Also the mechanisms by which LKB1 activity suppresses tumorigenesis is context dependent, where recent observations are providing hints on the molecular mechanisms involved.
Development | 2008
Kari Vaahtomeri; Marianne Tiainen; Pekka Katajisto; Niklas Ekman; Tea Vallenius; Tomi P. Mäkelä
Inactivation of the tumor suppressor kinase Lkb1 in mice leads to vascular defects and midgestational lethality at embryonic day 9-11 (E9-E11). Here, we have used conditional targeting to investigate the defects underlying the Lkb1-/- phenotype. Endothelium-restricted deletion of Lkb1 led to embryonic death at E12.5 with a loss of vascular smooth muscle cells (vSMCs) and vascular disruption. Transforming growth factor beta (TGFβ) pathway activity was reduced in Lkb1-deficient endothelial cells (ECs), and TGFβ signaling from Lkb1-/- ECs to adjacent mesenchyme was defective, noted as reduced SMAD2 phosphorylation. The addition of TGFβ to mutant yolk sac explants rescued the loss of vSMCs, as evidenced by smooth muscle alpha actin (SMA) expression. These results reveal an essential function for endothelial Lkb1 in TGFβ-mediated vSMC recruitment during angiogenesis.
Journal of Cell Science | 2008
Kari Vaahtomeri; Eeva Ventelä; Kaisa Laajanen; Pekka Katajisto; Pierre-Jean Wipff; Boris Hinz; Tea Vallenius; Marianne Tiainen; Tomi P. Mäkelä
Inactivating mutations of the tumor-suppressor kinase gene LKB1 underlie Peutz-Jeghers syndrome (PJS), which is characterized by gastrointestinal hamartomatous polyps with a prominent smooth-muscle and stromal component. Recently, it was noted that PJS-type polyps develop in mice in which Lkb1 deletion is restricted to SM22-expressing mesenchymal cells. Here, we investigated the stromal functions of Lkb1, which possibly underlie tumor suppression. Ablation of Lkb1 in primary mouse embryo fibroblasts (MEFs) leads to attenuated Smad activation and TGFβ-dependent transcription. Also, myofibroblast differentiation of Lkb1–/– MEFs is defective, resulting in a markedly decreased formation of α-smooth muscle actin (SMA)-positive stress fibers and reduced contractility. The myofibroblast differentiation defect was not associated with altered serum response factor (SRF) activity and was rescued by exogenous TGFβ, indicating that inactivation of Lkb1 leads to defects in myofibroblast differentiation through attenuated TGFβ signaling. These results suggest that tumorigenesis by Lkb1-deficient SM22-positive cells involves defective myogenic differentiation.
Journal of Cell Science | 2011
Tea Vallenius; Kari Vaahtomeri; Bianca Kovac; Ana-Maria Osiceanu; Martta Viljanen; Tomi P. Mäkelä
Actin stress fiber assembly and contractility in nonmuscle motile cells requires phosphorylation of myosin regulatory light chain (MLC). Dephosphorylation and disassembly are mediated by MLC phosphatase, which is targeted to actin fibers by the association of its regulatory subunit MYPT1 with myosin phosphatase Rho-interacting protein (MRIP). In the present study, we identify the kinase NUAK2 as a second protein targeted by MRIP to actin fibers. Association of NUAK2 with MRIP increases MLC phosphorylation and promotes formation of stress fibers. This activity does not require the kinase activity of NUAK2 but is dependent on both MRIP and MYPT1, indicating that the NUAK2–MRIP association inhibits fiber disassembly and MYPT1-mediated MLC dephosphorylation. NUAK2 levels are strongly induced by stimuli increasing actomyosin fiber formation, and NUAK2 is required for fiber maintenance in exponentially growing cells, implicating NUAK2 in a positive-feedback loop regulating actin stress fibers independently of the MLC kinase Rho-associated protein kinase (ROCK). The identified MRIP–NUAK2 association reveals a novel mechanism for the maintenance of actin stress fibers through counteracting MYPT1 and, together with recent results, implicates the NUAK proteins as important regulators of the MLC phosphatase acting in both a kinase-dependent and kinase-independent manner.
Nature Immunology | 2016
Rui Martins; Julia Maier; Anna-Dorothea Gorki; Kilian Huber; Omar Sharif; Philipp Starkl; Simona Saluzzo; Federica Quattrone; Riem Gawish; Karin Lakovits; Michael C Aichinger; Branka Radic-Sarikas; Charles-Hugues Lardeau; Anastasiya Hladik; Ana Korosec; Markus Brown; Kari Vaahtomeri; Michelle Duggan; Dontscho Kerjaschki; Harald Esterbauer; Jacques Colinge; Stephanie C. Eisenbarth; Thomas Decker; Keiryn L. Bennett; Stefan Kubicek; Michael Sixt; Giulio Superti-Furga; Sylvia Knapp
Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders.
Cell Reports | 2017
Kari Vaahtomeri; Markus Brown; Robert Hauschild; Ingrid de Vries; Alexander Leithner; Matthias Mehling; Walter A. Kaufmann; Michael Sixt
Summary Trafficking cells frequently transmigrate through epithelial and endothelial monolayers. How monolayers cooperate with the penetrating cells to support their transit is poorly understood. We studied dendritic cell (DC) entry into lymphatic capillaries as a model system for transendothelial migration. We find that the chemokine CCL21, which is the decisive guidance cue for intravasation, mainly localizes in the trans-Golgi network and intracellular vesicles of lymphatic endothelial cells. Upon DC transmigration, these Golgi deposits disperse and CCL21 becomes extracellularly enriched at the sites of endothelial cell-cell junctions. When we reconstitute the transmigration process in vitro, we find that secretion of CCL21-positive vesicles is triggered by a DC contact-induced calcium signal, and selective calcium chelation in lymphatic endothelium attenuates transmigration. Altogether, our data demonstrate a chemokine-mediated feedback between DCs and lymphatic endothelium, which facilitates transendothelial migration.
Genes & Development | 2017
Kari Vaahtomeri; Sinem Karaman; Taija Mäkinen; Kari Alitalo
Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.
Nature Communications | 2015
Yan Yan; Saara Ollila; Iris Wong; Tea Vallenius; Jorma J. Palvimo; Kari Vaahtomeri; Tomi P. Mäkelä
AMP-activated protein kinase (AMPK) inhibits several anabolic pathways such as fatty acid and protein synthesis, and identification of AMPK substrate specificity would be useful to understand its role in particular cellular processes and develop strategies to modulate AMPK activity in a substrate-specific manner. Here we show that SUMOylation of AMPKα1 attenuates AMPK activation specifically towards mTORC1 signalling. SUMOylation is also important for rapid inactivation of AMPK, to allow prompt restoration of mTORC1 signalling. PIAS4 and its SUMO E3 ligase activity are specifically required for the AMPKα1 SUMOylation and the inhibition of AMPKα1 activity towards mTORC1 signalling. The activity of a SUMOylation-deficient AMPKα1 mutant is higher than the wild type towards mTORC1 signalling when reconstituted in AMPKα-deficient cells. PIAS4 depletion reduced growth of breast cancer cells, specifically when combined with direct AMPK activator A769662, suggesting that inhibiting AMPKα1 SUMOylation can be explored to modulate AMPK activation and thereby suppress cancer cell growth.