Karidia Konate
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karidia Konate.
Molecular Therapy | 2009
Laurence Crombez; Gudrun Aldrian-Herrada; Karidia Konate; Quan N. Nguyen; Gary McMaster; Robert Brasseur; Frédéric Heitz; Gilles Divita
RNA interference constitutes a powerful tool for biological studies, but has also become one of the most challenging therapeutic strategies. However, small interfering RNA (siRNA)-based strategies suffer from their poor delivery and biodistribution. Cell-penetrating peptides (CPPs) have been shown to improve the intracellular delivery of various biologically active molecules into living cells and have more recently been applied to siRNA delivery. To improve cellular uptake of siRNA into challenging cell lines, we have designed a secondary amphipathic peptide (CADY) of 20 residues combining aromatic tryptophan and cationic arginine residues. CADY adopts a helical conformation within cell membranes, thereby exposing charged residues on one side, and Trp groups that favor cellular uptake on the other. We show that CADY forms stable complexes with siRNA, thereby increasing their stability and improving their delivery into a wide variety of cell lines, including suspension and primary cell lines. CADY-mediated delivery of subnanomolar concentrations of siRNA leads to significant knockdown of the target gene at both the mRNA and protein levels. Moreover, we demonstrate that CADY is not toxic and enters cells through a mechanism which is independent of the major endosomal pathway. Given its biological properties, we propose that CADY-based technology will have a significant effect on the development of fundamental and therapeutic siRNA-based applications.
Biochimica et Biophysica Acta | 2010
Emelía Eiríksdóttir; Karidia Konate; Ülo Langel; Gilles Divita; Sébastien Deshayes
The clinical use of efficient therapeutic agents is often limited by the poor permeability of the biological membranes. In order to enhance their cell delivery, short amphipathic peptides called cell-penetrating peptides (CPPs) have been intensively developed for the last two decades. CPPs are based either on protein transduction domains, model peptide or chimeric constructs and have been used to deliver cargoes into cells through either covalent or non-covalent strategies. Although several parameters are simultaneously involved in their internalization mechanism, recent focuses on CPPs suggested that structural properties and interactions with membrane phospholipids could play a major role in the cellular uptake mechanism. In the present work, we report a comparative analysis of the structural plasticity of 10 well-known CPPs as well as their ability to interact with phospholipid membranes. We propose a new classification of CPPs based on their structural properties, affinity for phospholipids and internalization pathways already reported in the literature.
The EMBO Journal | 2010
Fabienne Rayne; Solène Debaisieux; Hocine Yezid; Yea Lih Lin; Clément Mettling; Karidia Konate; Nathalie Chazal; Stefan Arold; Martine Pugnière; Françoise Sanchez; Anne Bonhoure; Laurence Briant; Erwann Loret; Christian Roy; Bruno Beaumelle
Human immunodeficiency virus type 1 (HIV‐1) transcription relies on its transactivating Tat protein. Although devoid of a signal sequence, Tat is released by infected cells and secreted Tat can affect uninfected cells, thereby contributing to HIV‐1 pathogenesis. The mechanism and the efficiency of Tat export remained to be documented. Here, we show that, in HIV‐1‐infected primary CD4+ T‐cells that are the main targets of the virus, Tat accumulates at the plasma membrane because of its specific binding to phosphatidylinositol‐4,5‐bisphosphate (PI(4,5)P2). This interaction is driven by a specific motif of the Tat basic domain that recognizes a single PI(4,5)P2 molecule and is stabilized by membrane insertion of Tat tryptophan side chain. This original recognition mechanism enables binding to membrane‐embedded PI(4,5)P2 only, but with an unusually high affinity that allows Tat to perturb the PI(4,5)P2‐mediated recruitment of cellular proteins. Tat–PI(4,5)P2 interaction is strictly required for Tat secretion, a process that is very efficient, as ∼2/3 of Tat are exported by HIV‐1‐infected cells during their lifespan. The function of extracellular Tat in HIV‐1 infection might thus be more significant than earlier thought.
PLOS ONE | 2011
Anna Rydström; Sébastien Deshayes; Karidia Konate; Laurence Crombez; Kärt Padari; Hassan Boukhaddaoui; Gudrun Aldrian; Margus Pooga; Gilles Divita
Cell penetrating peptides constitute a potent approach to overcome the limitations of in vivo siRNA delivery. We recently proposed a peptide-based nanoparticle system, CADY, for efficient delivery of siRNA into numerous cell lines. CADY is a secondary amphipathic peptide that forms stable complexes with siRNA thereby improving both their cellular uptake and biological response. With the aim of understanding the cellular uptake mechanism of CADY:siRNA complexes, we have combined biochemical, confocal and electron microscopy approaches. In the present work, we provide evidence that the major route for CADY:siRNA cellular uptake involves direct translocation through the membrane but not the endosomal pathway. We have demonstrated that CADY:siRNA complexes do not colocalize with most endosomal markers and remain fully active in the presence of inhibitors of the endosomal pathway. Moreover, neither electrostatic interactions with cell surface heparan sulphates nor membrane potential are essential for CADY:siRNA cell entry. In contrast, we have shown that CADY:siRNA complexes clearly induce a transient cell membrane permeabilization, which is rapidly restored by cell membrane fluidity. Therefore, we propose that direct translocation is the major gate for cell entry of CADY:siRNA complexes. Membrane perturbation and uptake are driven mainly by the ability of CADY to interact with phospholipids within the cell membrane, followed by rapid localization of the complex in the cytoplasm, without affecting cell integrity or viability.
Biochemistry | 2010
Karidia Konate; Laurence Crombez; Sébastien Deshayes; Marc Decaffmeyer; Annick Thomas; Robert Brasseur; Gudrun Aldrian; Frédéric Heitz; Gilles Divita
Delivery of siRNA remains a major limitation to their clinical application, and several technologies have been proposed to improve their cellular uptake. We recently described a peptide-based nanoparticle system for efficient delivery of siRNA into primary cell lines: CADY. CADY is a secondary amphipathic peptide that forms stable complexes with siRNA and improves their cellular uptake independently of the endosomal pathway. In the present work, we have combined molecular modeling, spectroscopy, and membrane interaction approaches in order to gain further insight into CADY/siRNA particle mechanism of interaction with biological membrane. We demonstrate that CADY forms stable complexes with siRNA and binds phospholipids tightly, mainly through electrostatic interactions. Binding to siRNA or phospholipids triggers a conformational transition of CADY from an unfolded state to an alpha-helical structure, thereby stabilizing CADY/siRNA complexes and improving their interactions with cell membranes. Therefore, we propose that CADY cellular membrane interaction is driven by its structural polymorphism which enables stabilization of both electrostatic and hydrophobic contacts with surface membrane proteoglycan and phospholipids.
Biochimica et Biophysica Acta | 2010
Sébastien Deshayes; Karidia Konate; Gudrun Aldrian; Laurence Crombez; Frédéric Heitz; Gilles Divita
During the last two decades, delivery has become a major challenge for the development of new therapeutic molecules for the clinic. Although, several strategies either viral or non viral have been proposed to favor cellular uptake and targeting of therapeutics, only few of them have reach preclinical evaluation. Amongst them, cell-penetrating peptide (CPP) constitutes one of the most promising strategy and has applied for systemic in vivo delivery of a variety of therapeutic molecules. Two CPP-strategies have been described; using peptide carriers either covalently-linked to the cargo or forming non-covalent stable complexes with cargo. Peptide-based nanoparticle delivery system corresponds to small amphipathic peptides able to form stable nanoparticles with either proteins/peptides or nucleic acids and to enter the cell independently of the endosomal pathway. Three families of peptide-based nanoparticle systems; MPG, PEP and CADY have been successfully used for the delivery of various biologically active cargoes both ex vivo and in vivo in several animal models. This review will focus on the mechanism of the peptide-based nanoparticles; PEP, MPG and CADY in a structural and biophysical context. It will also highlight the major parameters associated to particle formation/stabilization and the impact of the carrier structural polymorphism in triggering cellular uptake.
Journal of Biological Chemistry | 2009
Hocine Yezid; Karidia Konate; Solène Debaisieux; Anne Bonhoure; Bruno Beaumelle
The human immunodeficiency virus, type 1, transactivating protein Tat is a small protein that is strictly required for viral transcription and multiplication within infected cells. The infected cells actively secrete Tat using an unconventional secretion pathway. Extracellular Tat can affect different cell types and induce severe cell dysfunctions ranging from cell activation to cell death. To elicit most cell responses, Tat needs to reach the cell cytosol. To this end, Tat is endocytosed, and low endosomal pH will then trigger Tat translocation to the cytosol. Although this translocation step is critical for Tat cytosolic delivery, how Tat could interact with the endosome membrane is unknown, and the key residues involved in this interaction require identification. We found that, upon acidification below pH 6.0 (i.e. within the endosomal pH range), Tat inserts into model membranes such as monolayers or lipid vesicles. This insertion process relies on Tat single Trp, Trp-11, which is not needed for transactivation and could be replaced by another aromatic residue for membrane insertion. Nevertheless, Trp-11 is strictly required for translocation. Tat conformational changes induced by low pH involve a sensor made of its first acidic residue (Glu/Asp-2) and the end of its basic domain (residues 55–57). Mutation of one of these elements results in membrane insertion above pH 6.5. Tat basic domain is also required for efficient Tat endocytosis and membrane insertion. Together with the strict conservation of Tat Trp among different virus isolates, our results point to an important role for Tat-membrane interaction in the multiplication of human immunodeficiency virus type 1.
Vaccine | 2011
Sope Olugbile; Viviane Villard; Sylvie Bertholet; Ali Jafarshad; Caroline Kulangara; Christian Roussilhon; Geraldine Frank; George W. Agak; Ingrid Felger; Issa Nebie; Karidia Konate; Andrey V. Kajava; Peter Schuck; Pierre Druilhe; François Spertini; Giampietro Corradin
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Current Pharmaceutical Design | 2013
Karidia Konate; Anna Rydström; Gilles Divita; Sébastien Deshayes
Although siRNA consist in very promising therapeutics, their clinical development is limited by several biological barriers including low cellular permeability, poor stability and lack of tissue specificity. Therefore the Achilles heel for siRNA-based therapy is directly related to the lack of efficient system to promote their delivery. During the last two decades, cell-penetrating peptides (CPPs) have been widely developed to enhance the cellular delivery of therapeutics. In this context we have elaborated a new strategy based on self-assembling peptide-based nanoparticles. The CADY peptide is a 20-residue secondary amphipathic peptide which is able to spontaneously self associate with siRNA with a strong affinity, by combining both electrostatic and hydrophobic interactions, to form stable nanoparticles. Investigations of both physico-chemical properties and cellular siRNA delivery revealed that the CADY/siRNA complexes were able to enter a wide variety of cell lines by a mechanism independent of any endocytotic pathway. In addition a deeper understanding of the self assembly of CADY molecules around siRNA leads to a raspberry-like nanoparticle architecture which provides new perspectives for the CADY/siRNA formulations. Finally the robustness of the biological response infers that peptide-based nanoparticle technology holds a strong promise for therapeutic applications. The present review deals with most of the biophysical characteristics as well as the cellular mechanism and cellular applications of CADY/siRNA nanoparticles.
Methods of Molecular Biology | 2011
Sébastien Deshayes; Karidia Konate; Gudrun Aldrian; Frédéric Heitz; Gilles Divita
Due to the poor permeability of the plasma membrane, several strategies are designed to enhance the transfer of therapeutics into cells. Over the last 20 years, small peptides called Cell-Penetrating Peptides (CPPs) have been widely developed to improve the cellular delivery of biomolecules. These small peptides derive from protein transduction domains, chimerical constructs, or model sequences. Several CPPs are primary or secondary amphipathic peptides, depending on whether the distribution of their hydrophobic and hydrophilic domains occurs from their amino-acid sequence or through α-helical folding. Most of the CPPs are able to deliver different therapeutics such as nucleic acids or proteins in vitro and in vivo. Although their mechanisms of internalization are varied and controversial, the understanding of the intrinsic features of CPPs is essential for future developments. This chapter describes several protocols for the investigation of biophysical properties of amphipathic CPPs. Surface physics approaches are specifically applied to characterize the interactions of amphipathic peptides with model membranes. Circular dichroism and infra-red spectroscopy allow the identification of their structural state. These methods are exemplified by the analyses of the main biophysical features of the cell-penetrating peptides MPG, Pep-1, and CADY.