Karim Chebli
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karim Chebli.
Journal of Cell Biology | 2003
Hélène Tourrière; Karim Chebli; Latifa Zekri; Brice Courselaud; Jean Marie Blanchard; Edouard Bertrand; Jamal Tazi
Stress granules (SGs) are formed in the cytoplasm in response to various toxic agents, and are believed to play a critical role in the regulation of mRNA metabolism during stress. In SGs, mRNAs are stored in an abortive translation initiation complex that can be routed to either translation initiation or degradation. Here, we show that G3BP, a phosphorylation-dependent endoribonuclease that interacts with RasGAP, is recruited to SGs in cells exposed to arsenite. G3BP may thus determine the fate of mRNAs during cellular stress. Remarkably, SG assembly can be either dominantly induced by G3BP overexpression, or on the contrary, inhibited by expressing a central domain of G3BP. This region binds RasGAP and contains serine 149, whose dephosphorylation is induced by arsenite treatment. Critically, a phosphomimetic mutant (S149E) fails to oligomerize and to assemble SGs, whereas a nonphosphorylatable G3BP mutant (S149A) does both. These results suggest that G3BP is an effector of SG assembly, and that Ras signaling contributes to this process by regulating G3BP dephosphorylation.
Biochimie | 2002
Hélène Tourrière; Karim Chebli; Jamal Tazi
The steady-state levels of mRNAs depend upon their combined rates of synthesis and processing, transport from the nucleus to cytoplasm, and decay in the cytoplasm. In eukaryotic cells, the degradation of mRNA is an essential determinant in the regulation of gene expression, and it can be modulated in response to developmental, environmental, and metabolic signals. This level of regulation is particularly important for proteins that are active for a brief period, such as growth factors, transcription factors, and proteins that control cell cycle progression. The mechanisms by which mRNAs are degraded and the sequence elements within the mRNAs that affect their stability are the subject of this review. We will summarize the current state of knowledge regarding cis-acting elements in mRNA and trans-acting factors that contribute to mRNA regulation decay. We will then consider the mechanisms by which specific signaling proteins seem to contribute to a dynamic organization of the mRNA degradation machinery in response to physiological stimuli.
Molecular and Cellular Biology | 1998
Imed-Eddine Gallouzi; Fabienne Parker; Karim Chebli; Florence Maurier; Emmanuel Labourier; Isabelle Barlat; Jean-Paul Capony; Bruno Tocque; Jamal Tazi
ABSTRACT A potential p120 GTPase-activating protein (RasGAP) effector, G3BP (RasGAP Src homology 3 [SH3] binding protein), was previously identified based on its ability to bind the SH3 domain of RasGAP. Here we show that G3BP colocalizes and physically interacts with RasGAP at the plasma membrane of serum-stimulated but not quiescent Chinese hamster lung fibroblasts. In quiescent cells, G3BP was hyperphosphorylated on serine residues, and this modification was essential for its activity. Indeed, G3BP harbors a phosphorylation-dependent RNase activity which specifically cleaves the 3′-untranslated region of human c-myc mRNA. The endoribonuclease activity of G3BP can initiate mRNA degradation and therefore represents a link between a RasGAP-mediated signaling pathway and RNA turnover.
Molecular and Cellular Biology | 2008
Alexandre Wagschal; Heidi G. Sutherland; Kathryn Woodfine; Amandine Henckel; Karim Chebli; Reiner Schulz; Rebecca J. Oakey; Wendy A. Bickmore; Robert Feil
ABSTRACT Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.
Molecular and Cellular Biology | 2001
Hélène Tourrière; Imed-Eddine Gallouzi; Karim Chebli; Jean Paul Capony; John Mouaikel; Peter van der Geer; Jamal Tazi
ABSTRACT Mitogen activation of mRNA decay pathways likely involves specific endoribonucleases, such as G3BP, a phosphorylation-dependent endoribonuclease that associates with RasGAP in dividing but not quiescent cells. G3BP exclusively cleaves between cytosine and adenine (CA) after a specific interaction with RNA through the carboxyl-terminal RRM-type RNA binding motif. Accordingly, G3BP is tightly associated with a subset of poly(A)+ mRNAs containing its high-affinity binding sequence, such as the c-myc mRNA in mouse embryonic fibroblasts. Interestingly, c-myc mRNA decay is delayed in RasGAP-deficient fibroblasts, which contain a defective isoform of G3BP that is not phosphorylated at serine 149. A G3BP mutant in which this serine is changed to alanine remains exclusively cytoplasmic, whereas a glutamate for serine substitution that mimics the charge of a phosphorylated serine is translocated to the nucleus. Thus, a growth factor-induced change in mRNA decay may be modulated by the nuclear localization of a site-specific endoribonuclease such as G3BP.
Molecular and Cellular Biology | 2008
Anne Briançon-Marjollet; Atefeh Ghogha; Homaira Nawabi; Ibtissem Triki; Camille Auziol; Sylvie Fromont; Chantal Piché; Hervé Enslen; Karim Chebli; Jean-François Cloutier; Valérie Castellani; Anne Debant; Nathalie Lamarche-Vane
ABSTRACT The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio−/− cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio−/− spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.
Journal of Cell Science | 2004
Céline Candé; Nicola Vahsen; Didier Métivier; Hélène Tourrière; Karim Chebli; Carmen Garrido; Jamal Tazi; Guido Kroemer
Stress granules (SG) are dynamic cytoplasmic foci in which stalled translation initiation complexes accumulate. In conditions of acute cellular redox, stress cells manipulated to lose the expression of apoptosis-inducing factor (AIF) nucleate SG signature proteins (e.g. TIA-1, PABP1) more efficiently than AIF-positive controls. AIF also inhibited SG formation induced by the RasGAP-associated endoribonuclease G3BP. Retransfection of mouse AIF into cells subjected to human AIF-specific siRNA revealed that only AIF imported into mitochondria could repress SGs and that redox-active domains of AIF, which are dispensable for its apoptogenic action, were required for SG inhibition. In response to oxidative stress, AIF-negative cells were found to deplete non-oxidized glutathione more rapidly than AIF-expressing cells. Exogenous supplementation of glutathione inhibited SG formation elicited by arsenate or G3BP. Together, these data suggest that the oxidoreductase function of AIF is required for the maintenance of glutathione levels in stress conditions and that glutathione is a major regulator of SG.
The EMBO Journal | 2012
Amandine Henckel; Karim Chebli; Satya K. Kota; Philippe Arnaud; Robert Feil
Genomic imprinting in mammals is controlled by DNA methylation imprints that are acquired in the gametes, at essential sequence elements called ‘imprinting control regions’ (ICRs). What signals paternal imprint acquisition in male germ cells remains unknown. To address this question, we explored histone methylation at ICRs in mouse primordial germ cells (PGCs). By 13.5 days post coitum (d.p.c.), H3 lysine‐9 and H4 lysine‐20 trimethylation are depleted from ICRs in male (and female) PGCs, indicating that these modifications do not signal subsequent imprint acquisition, which initiates at ∼15.5 d.p.c. Furthermore, during male PGC development, H3 lysine‐4 trimethylation becomes biallelically enriched at ‘maternal’ ICRs, which are protected against DNA methylation, and whose promoters are active in the male germ cells. Remarkably, high transcriptional read‐through is detected at the paternal ICRs H19‐DMR and Ig‐DMR at the time of imprint establishment, from one of the strands predominantly. Combined, our data evoke a model in which differential histone modification states linked to transcriptional events may signal the specificity of imprint acquisition during spermatogenesis.
Molecular and Cellular Biology | 2005
Latifa Zekri; Karim Chebli; Hélène Tourrière; Finn Cilius Nielsen; Thomas V O Hansen; Abdelhaq Rami; Jamal Tazi
ABSTRACT The regulation of mRNA stability plays a major role in the control of gene expression during cell proliferation, differentiation, and development. Here, we show that inactivation of the RasGAP-associated endoribonuclease (G3BP)-encoding gene leads to embryonic lethality and growth retardation. G3BP − / − mice that survived to term exhibited increased apoptotic cell death in the central nervous system and neonatal lethality. Both in mouse embryonic fibroblasts and during development, the absence of G3BP altered the expression of essential growth factors, among which imprinted gene products and growth arrest-specific mRNAs were outstanding. The results demonstrate that G3BP is essential for proper embryonic growth and development by mediating the coordinate expression of multiple imprinted growth-regulatory transcripts.
EMBO Reports | 2014
Isabel C. Lopez-Mejia; Marion De Toledo; Carine Chavey; Laure Lapasset; Patricia Cavelier; Celia Lopez-Herrera; Karim Chebli; Philippe Fort; Guillaume E. Beranger; Lluis Fajas; Ez-Zoubir Amri; François Casas; Jamal Tazi
Alternative RNA processing of LMNA pre‐mRNA produces three main protein isoforms, that is, lamin A, progerin, and lamin C. De novo mutations that favor the expression of progerin over lamin A lead to Hutchinson‐Gilford progeria syndrome (HGPS), providing support for the involvement of LMNA processing in pathological aging. Lamin C expression is mutually exclusive with the splicing of lamin A and progerin isoforms and occurs by alternative polyadenylation. Here, we investigate the function of lamin C in aging and metabolism using mice that express only this isoform. Intriguingly, these mice live longer, have decreased energy metabolism, increased weight gain, and reduced respiration. In contrast, progerin‐expressing mice show increased energy metabolism and are lipodystrophic. Increased mitochondrial biogenesis is found in adipose tissue from HGPS‐like mice, whereas lamin C‐only mice have fewer mitochondria. Consistently, transcriptome analyses of adipose tissues from HGPS and lamin C‐only mice reveal inversely correlated expression of key regulators of energy expenditure, including Pgc1a and Sfrp5. Our results demonstrate that LMNA encodes functionally distinct isoforms that have opposing effects on energy metabolism and lifespan in mammals.