Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karim Gariani is active.

Publication


Featured researches published by Karim Gariani.


Science | 2016

NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice

Hongbo Zhang; Dongryeol Ryu; Yibo Wu; Karim Gariani; Xu Wang; Peiling Luan; Davide D'Amico; Eduardo R. Ropelle; Matthias P. Lutolf; Ruedi Aebersold; Kristina Schoonjans; Keir J. Menzies; Johan Auwerx

A dietary supplement protects aging muscle The oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and its supplementation can lead to increased longevity. Zhang et al. found that feeding the NAD+ precursor nicotinamide riboside (NR) to aging mice protected them from muscle degeneration (see the Perspective by Guarente). NR treatment enhanced muscle function and also protected mice from the loss of muscle stem cells. The treatment was similarly protective of neural and melanocyte stem cells, which may have contributed to the extended life span of the NR-treated animals. Science, this issue p. 1436; see also p. 1396 A dietary supplement protects muscle stem cells and increases mouse longevity. Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD+ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD+ may reprogram dysfunctional SCs and improve life span in mammals.


Hepatology | 2016

Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice

Karim Gariani; Keir J. Menzies; Dongryeol Ryu; Casey J. Wegner; Xu Wang; Eduardo R. Ropelle; Norman Moullan; Hongbo Zhang; Alessia Perino; Vera Lemos; Bohkyung Kim; Young-Ki Park; Alessandra Piersigilli; Tho X. Pham; Yue Yang; Chai Siah Ku; Sung I. Koo; Anna Fomitchova; Carlos Cantó; Kristina Schoonjans; Anthony A. Sauve; Ji-Young Lee; Johan Auwerx

With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high‐fat high‐sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD+) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD+ repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD+ biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1‐ and SIRT3‐dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic β‐oxidation and mitochondrial complex content and activity. The cell‐autonomous beneficial component of NR treatment was revealed in liver‐specific Sirt1 knockout mice (Sirt1hep−/−), whereas apolipoprotein E‐deficient mice (Apoe−/−) challenged with a high‐fat high‐cholesterol diet affirmed the use of NR in other independent models of NAFLD. Conclusion: Our data warrant the future evaluation of NAD+ boosting strategies to manage the development or progression of NAFLD. (Hepatology 2016;63:1190–1204)


Hepatology | 2015

Eliciting the mitochondrial unfolded protein response via NAD+ repletion reverses fatty liver disease

Karim Gariani; Keir J. Menzies; Dongryeol Ryu; Casey J Wenger; Xu Wang; Eduardo R. Ropelle; Norman Moullan; Hongbo Zhang; Alessia Perino; Vera Monica Lemos Da Silva; Carlos Canto Alvarez; Kristina Schoonjans; Anthony A. Sauve; Ji-Young Lee; Johan Auwerx

With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high‐fat high‐sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD+) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD+ repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD+ biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1‐ and SIRT3‐dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic β‐oxidation and mitochondrial complex content and activity. The cell‐autonomous beneficial component of NR treatment was revealed in liver‐specific Sirt1 knockout mice (Sirt1hep−/−), whereas apolipoprotein E‐deficient mice (Apoe−/−) challenged with a high‐fat high‐cholesterol diet affirmed the use of NR in other independent models of NAFLD. Conclusion: Our data warrant the future evaluation of NAD+ boosting strategies to manage the development or progression of NAFLD. (Hepatology 2016;63:1190–1204)


Diabetes & Metabolism | 2013

Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside.

Karim Gariani; Jacques Philippe; François R. Jornayvaz

Non-alcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in the developed countries. There is also growing evidence from basic and clinical research that NAFLD has a strong relationship to insulin resistance, which is a key factor in the development of type 2 diabetes. The aim of this review is to summarize the recent important findings linking NAFLD and insulin resistance. Lipid accumulation, particularly of diacylglycerol, appears to be of major importance in this process. Mitochondrial dysfunction, through decreased mitochondrial biogenesis, increases oxidative stress, and ageing also plays an important role. Finally, endoplasmic reticulum stress and inflammation also probably contribute to the development of insulin resistance via mechanisms that are still not well understood. Clinical aspects of NAFLD, such as its diagnosis and management, are also investigated in this review.


Diabetes, Obesity and Metabolism | 2014

Diabetic foot infections: state-of-the-art

Ilker Uckay; Karim Gariani; Zoltan Pataky; Benjamin A. Lipsky

Foot infections are frequent and potentially devastating complications of diabetes. Unchecked, infection can progress contiguously to involve the deeper soft tissues and ultimately the bone. Foot ulcers in people with diabetes are most often the consequence of one or more of the following: peripheral sensory neuropathy, motor neuropathy and gait disorders, peripheral arterial insufficiency or immunological impairments. Infection develops in over half of foot ulcers and is the factor that most often leads to lower extremity amputation. These amputations are associated with substantial morbidity, reduced quality of life and major financial costs. Most infections can be successfully treated with optimal wound care, antibiotic therapy and surgical procedures. Employing evidence‐based guidelines, multidisciplinary teams and institution‐specific clinical pathways provides the best approach to guide clinicians through this multifaceted problem. All clinicians regularly seeing people with diabetes should have an understanding of how to prevent, diagnose and treat foot infections, which requires familiarity with the pathophysiology of the problem and the literature supporting currently recommended care.


European Journal of Internal Medicine | 2014

Mineralocorticoid receptor blockade in addition to angiotensin converting enzyme inhibitor or angiotensin II receptor blocker treatment: an emerging paradigm in diabetic nephropathy: a systematic review.

Thomas A. Mavrakanas; Karim Gariani; Pierre-Yves Martin

Blockade of the renin-angiotensin-aldosterone system (RAAS) is a standard therapeutic intervention in diabetic patients with chronic kidney disease (CKD). Concomitant mineralocorticoid receptor blockade has been studied as a novel approach to further slow down CKD progression. We used PubMed and EMBASE databases to search for relevant literature. We included in our review eight studies in patients of at least 18 years of age, with a diagnosis of type 1 or type 2 diabetes mellitus and diabetic nephropathy, under an angiotensin converting enzyme inhibitor (ACEI) and/or an angiotensin II receptor blocker (ARB) as standard treatment. A subset of patients in each study also received a mineralocorticoid receptor blocker (MRB) (either spironolactone or eplerenone) in addition to standard treatment. Combined treatment with a mineralocorticoid receptor blocker further reduced albuminuria by 23 to 61% compared with standard treatment. Estimated glomerular filtration rate values upon study completion slightly decreased under combined treatment. Blood pressure levels upon study completion were significantly lower with combined treatment in three studies. Hyperkalemia prevalence increased in patients under combined treatment raising dropout rate up to 17%. Therefore, combined treatment by an ACEI/ARB and a MRB may further decrease albuminuria in diabetic nephropathy. This effect may be due to the specific properties of the MRB treatment. Clinicians should regularly check potassium levels because of the increased risk of hyperkalemia. Available evidence should be confirmed by an adequately powered comparative trial of the standard treatment (ACEI or ARB) versus combined treatment by an ACEI/ARB and a MRB.


Science Translational Medicine | 2016

NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation

Dongryeol Ryu; Hongbo Zhang; Eduardo R. Ropelle; Vincenzo Sorrentino; Davi A. G. Mázala; Laurent Mouchiroud; Philip Marshall; Matthew D. Campbell; Amir S. Ali; Gary Knowels; Stéphanie Bellemin; Shama R. Iyer; Xu Wang; Karim Gariani; Anthony A. Sauve; Carles Cantó; Kevin E. Conley; Ludivine Walter; Richard M. Lovering; Eva R. Chin; Bernard J. Jasmin; David J. Marcinek; Keir J. Menzies; Johan Auwerx

NAD+ treatment can reverse the functional decline in degenerating muscles. Making muscle work better Degenerating muscle—whether from muscular dystrophies, myopathies, or other diseases—loses its mitochondria (the energy supply) and an essential cofactor nicotinamide adenine dinucleotide (NAD+), while gaining an extra load of enzymes that use up NAD+, as reported by Ryu and colleagues. The resulting loss of NAD+ is exacerbated by a drop in NAD+ biosynthetic enzymes, such as NAMPT. Restoration of NAD+ levels in either mice or worms with disease-like degenerating muscles improved muscle function, a consequence of more mitochondria, more muscle structural proteins, and a decrease in inflammation. The authors suggest that NAD+ repletion may be a successful therapeutic approach for a number of muscle-wasting diseases. Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD+) synthesis, consistent with a potential role for the essential cofactor NAD+ in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene’s muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5′-diphosphate (ADP)–ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD+ and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD+ levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ biosynthesis. Replenishing NAD+ stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr−/− mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD+ repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD+ may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures.


Journal of Hepatology | 2017

Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease

Karim Gariani; Dongryeol Ryu; Keir J. Menzies; Hyon-Seung Yi; Sokrates Stein; Hongbo Zhang; Alessia Perino; Vera Lemos; Elena Katsyuba; Pooja Jha; Sandrine Vijgen; Laura Rubbia-Brandt; Yong Kyung Kim; Jung Tae Kim; Koon Soon Kim; Minho Shong; Kristina Schoonjans; Johan Auwerx

BACKGROUND & AIMS To date, no pharmacological therapy has been approved for non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to evaluate the therapeutic potential of poly ADP-ribose polymerase (PARP) inhibitors in mouse models of NAFLD. METHODS As poly ADP-ribosylation (PARylation) of proteins by PARPs consumes nicotinamide adenine dinucleotide (NAD+), we hypothesized that overactivation of PARPs drives NAD+ depletion in NAFLD. Therefore, we assessed the effectiveness of PARP inhibition to replenish NAD+ and activate NAD+-dependent sirtuins, hence improving hepatic fatty acid oxidation. To do this, we examined the preventive and therapeutic benefits of the PARP inhibitor (PARPi), olaparib, in different models of NAFLD. RESULTS The induction of NAFLD in C57BL/6J mice using a high-fat high-sucrose (HFHS)-diet increased PARylation of proteins by PARPs. As such, increased PARylation was associated with reduced NAD+ levels and mitochondrial function and content, which was concurrent with elevated hepatic lipid content. HFHS diet supplemented with PARPi reversed NAFLD through repletion of NAD+, increasing mitochondrial biogenesis and β-oxidation in liver. Furthermore, PARPi reduced reactive oxygen species, endoplasmic reticulum stress and fibrosis. The benefits of PARPi treatment were confirmed in mice fed with a methionine- and choline-deficient diet and in mice with lipopolysaccharide-induced hepatitis; PARP activation was attenuated and the development of hepatic injury was delayed in both models. Using Sirt1hep-/- mice, the beneficial effects of a PARPi-supplemented HFHS diet were found to be Sirt1-dependent. CONCLUSIONS Our study provides a novel and practical pharmacological approach for treating NAFLD, fueling optimism for potential clinical studies. LAY SUMMARY Non-alcoholic fatty liver disease (NAFLD) is now considered to be the most common liver disease in the Western world and has no approved pharmacological therapy. PARP inhibitors given as a treatment in two different mouse models of NAFLD confer a protection against its development. PARP inhibitors may therefore represent a novel and practical pharmacological approach for treating NAFLD.


Journal of Hepatology | 2017

PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis

Partha Mukhopadhyay; Béla Horváth; Mohanraj Rajesh; Zoltán V. Varga; Karim Gariani; Dongryeol Ryu; Zongxian Cao; Eileen Holovac; Ogyi Park; Zhou Zhou; Ming-Jiang Xu; Wei Wang; Grzegorz Godlewski; János Pálóczi; Balazs Tamas Nemeth; Yuri Persidsky; Lucas Liaudet; György Haskó; Péter Bai; A. Hamid Boulares; Johan Auwerx; Bin Gao; Pál Pacher

BACKGROUND & AIMS Mitochondrial dysfunction, oxidative stress, inflammation, and metabolic reprograming are crucial contributors to hepatic injury and subsequent liver fibrosis. Poly(ADP-ribose) polymerases (PARP) and their interactions with sirtuins play an important role in regulating intermediary metabolism in this process. However, there is little research into whether PARP inhibition affects alcoholic and non-alcoholic steatohepatitis (ASH/NASH). METHODS We investigated the effects of genetic deletion of PARP1 and pharmacological inhibition of PARP in models of early alcoholic steatohepatitis, as well as on Kupffer cell activation in vitro using biochemical assays, real-time PCR, and histological analyses. The effects of PARP inhibition were also evaluated in high fat or methionine and choline deficient diet-induced steatohepatitis models in mice. RESULTS PARP activity was increased in livers due to excessive alcohol intake, which was associated with decreased NAD+ content and SIRT1 activity. Pharmacological inhibition of PARP restored the hepatic NAD+ content, attenuated the decrease in SIRT1 activation and beneficially affected the metabolic-, inflammatory-, and oxidative stress-related alterations due to alcohol feeding in the liver. PARP1-/- animals were protected against alcoholic steatohepatitis and pharmacological inhibition of PARP or genetic deletion of PARP1 also attenuated Kupffer cell activation in vitro. Furthermore, PARP inhibition decreased hepatic triglyceride accumulation, metabolic dysregulation, or inflammation and/or fibrosis in models of NASH. CONCLUSION Our results suggests that PARP inhibition is a promising therapeutic strategy in steatohepatitis with high translational potential, considering the availability of PARP inhibitors for clinical treatment of cancer. LAY SUMMARY Poly(ADP-ribose) polymerases (PARP) are the most abundant nuclear enzymes. The PARP inhibitor olaparib (Lynparza) is a recently FDA-approved therapy for cancer. This study shows that PARP is overactivated in livers of subjects with alcoholic liver disease and that pharmacological inhibition of this enzyme with 3 different PARP inhibitors, including olaparib, attenuates high fat or alcohol induced liver injury, abnormal metabolic alteration, fat accumulation, inflammation and/or fibrosis in preclinical models of liver disease. These results suggest that PARP inhibition is a promising therapeutic strategy in the treatment of alcoholic and non-alcoholic liver diseases.


Swiss Medical Weekly | 2011

Use of brain natriuretic peptide to detect previously unknown left ventricular dysfunction in patients with acute exacerbation of chronic obstructive pulmonary disease

Karim Gariani; Alain Delabays; Thomas V. Perneger; Thomas Agoritsas

BACKGROUND Up to 30% of patients with chronic obstructive pulmonary disease (COPD) simultaneously suffer from often-unrecognised chronic heart failure (HF). Their timely identification is challenging as both conditions share similar clinical presentations. OBJECTIVE To assess the performance of BNP in detecting left ventricular systolic dysfunction in patients with no history of HF admitted for acute exacerbation of COPD in a regional second-care hospital. METHODS Retrospective medical records analysis of all patients hospitalised between January 2003 and May 2009 with the final diagnosis of acute exacerbation of COPD, and who had undergone BNP dosage at admission followed by an echocardiography. RESULTS Among the 57 patients included, 13 had left ventricular systolic dysfunction. There was a statistically significant difference of mean BNP values between patients with or without systolic dysfunction (mean 689 pg/ml vs. 340 pg/ml, p = 0.007). For the detection of systolic dysfunction, a BNP level inferior to 100 pg/ml yielded a sensitivity of 92% and a negative predictive value of 91%, whereas BNP higher than 500 yielded a sensitivity of 80% and a positive predictive value of 47%. In a multivariate logistic regression analysis, a BNP value ≥500 (odds ratio 8.5, 95% confidence interval 1.9 to 38.2, p = 0.005) and history of coronary heart disease (odds ratio 5.9, 95% confidence interval 1.01 to 34.7, p = 0.048) remained as independent and mutually adjusted predictors of left ventricular systolic dysfunction. CONCLUSIONS Our study confirms that BNP can help physicians in identifying heart failure in patients suffering from an acute exacerbation of COPD.

Collaboration


Dive into the Karim Gariani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Dongryeol Ryu

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongbo Zhang

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristina Schoonjans

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keir J. Menzies

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge