Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karim Sallam is active.

Publication


Featured researches published by Karim Sallam.


Circulation | 2013

Drug Screening Using a Library of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity

Ping Liang; Feng Lan; Andrew S. Lee; Tingyu Gong; Veronica Sanchez-Freire; Yongming Wang; Sebastian Diecke; Karim Sallam; Joshua W. Knowles; Paul J. Wang; Patricia K. Nguyen; Donald M. Bers; Robert C. Robbins; Joseph C. Wu

Background— Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds. Methods and Results— Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome, familial hypertrophic cardiomyopathy, and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell–derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go–related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs, but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations. Conclusions— We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects, long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go–related gene test or healthy control hiPSC-CM/hESC-CM screening assays.


Circulation Research | 2014

Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform

Arun Sharma; Caleb Marceau; Ryoko Hamaguchi; Paul W. Burridge; Kuppusamy Rajarajan; Jared M. Churko; Haodi Wu; Karim Sallam; Elena Matsa; Anthony C. Sturzu; Yonglu Che; Antje D. Ebert; Sebastian Diecke; Ping Liang; Kristy Red-Horse; Jan E. Carette; Sean M. Wu; Joseph C. Wu

Rationale: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. Objective: This study examined whether human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. Methods and Results: hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferon&bgr;1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferon&bgr;1 treatment. Conclusions: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion.


Cell Stem Cell | 2015

Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy

Haodi Wu; Jaecheol Lee; Ludovic G. Vincent; Qingtong Wang; Mingxia Gu; Feng Lan; Jared M. Churko; Karim Sallam; Elena Matsa; Arun Sharma; Joseph D. Gold; Adam J. Engler; Yang K. Xiang; Donald M. Bers; Joseph C. Wu

β-adrenergic signaling pathways mediate key aspects of cardiac function. Its dysregulation is associated with a range of cardiac diseases, including dilated cardiomyopathy (DCM). Previously, we established an iPSC model of familial DCM from patients with a mutation in TNNT2, a sarcomeric protein. Here, we found that the β-adrenergic agonist isoproterenol induced mature β-adrenergic signaling in iPSC-derived cardiomyocytes (iPSC-CMs) but that this pathway was blunted in DCM iPSC-CMs. Although expression levels of several β-adrenergic signaling components were unaltered between control and DCM iPSC-CMs, we found that phosphodiesterases (PDEs) 2A and PDE3A were upregulated in DCM iPSC-CMs and that PDE2A was also upregulated in DCM patient tissue. We further discovered increased nuclear localization of mutant TNNT2 and epigenetic modifications of PDE genes in both DCM iPSC-CMs and patient tissue. Notably, pharmacologic inhibition of PDE2A and PDE3A restored cAMP levels and ameliorated the impaired β-adrenergic signaling of DCM iPSC-CMs, suggesting therapeutic potential.


Circulation Research | 2014

Cardiac Stem Cell Biology: Glimpse of the Past, Present, and Future

Elena Matsa; Karim Sallam; Joseph C. Wu

Cardiac regeneration strategies and de novo generation of cardiomyocytes have long been significant areas of research interest in cardiovascular medicine. In this review, we outline a variety of common cell sources and methods used to regenerate cardiomyocytes and highlight the important role that key Circulation Research articles have played in this flourishing field.


Circulation Research | 2015

Finding the Rhythm of Sudden Cardiac Death New Opportunities Using Induced Pluripotent Stem Cell–Derived Cardiomyocytes

Karim Sallam; Yingxin Li; Philip T. Sager; Steven R. Houser; Joseph C. Wu

Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology, including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single-ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell-derived cardiomyocytes resemble, but are not identical, adult human cardiomyocytes and provide a new platform for studying arrhythmic disorders leading to sudden cardiac death. A variety of platforms exist to phenotype cellular models, including conventional and automated patch clamp, multielectrode array, and computational modeling. Induced pluripotent stem cell-derived cardiomyocytes have been used to study long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and other hereditary cardiac disorders. Although induced pluripotent stem cell-derived cardiomyocytes are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of sudden cardiac death.Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell derived Cardiomyocytes (iPSC-CMs) resemble, but are not identical, to adult human cardiomyocytes, and provide a new platform for studying arrhythmic disorders leading to SCD. A variety of platforms exist to phenotype cellular models including conventional and automated patch clamp, multi-electrode array, and computational modeling. iPSC-CMs have been used to study Long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy and other hereditary cardiac disorders. Although iPSC-CMs are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of SCD.


Circulation Research | 2015

A Rapid, High-Quality, Cost-Effective, Comprehensive and Expandable Targeted Next-Generation Sequencing Assay for Inherited Heart Diseases

Kitchener D. Wilson; Peidong Shen; Eula Fung; Ioannis Karakikes; Angela Zhang; Kolsoum InanlooRahatloo; Justin I. Odegaard; Karim Sallam; Ronald W. Davis; George K. Lui; Euan A. Ashley; Curt Scharfe; Joseph C. Wu

RATIONALE Thousands of mutations across >50 genes have been implicated in inherited cardiomyopathies. However, options for sequencing this rapidly evolving gene set are limited because many sequencing services and off-the-shelf kits suffer from slow turnaround, inefficient capture of genomic DNA, and high cost. Furthermore, customization of these assays to cover emerging targets that suit individual needs is often expensive and time consuming. OBJECTIVE We sought to develop a custom high throughput, clinical-grade next-generation sequencing assay for detecting cardiac disease gene mutations with improved accuracy, flexibility, turnaround, and cost. METHODS AND RESULTS We used double-stranded probes (complementary long padlock probes), an inexpensive and customizable capture technology, to efficiently capture and amplify the entire coding region and flanking intronic and regulatory sequences of 88 genes and 40 microRNAs associated with inherited cardiomyopathies, congenital heart disease, and cardiac development. Multiplexing 11 samples per sequencing run resulted in a mean base pair coverage of 420, of which 97% had >20× coverage and >99% were concordant with known heterozygous single nucleotide polymorphisms. The assay correctly detected germline variants in 24 individuals and revealed several polymorphic regions in miR-499. Total run time was 3 days at an approximate cost of


Mayo Clinic Proceedings | 2012

Prognostic Implications of Q Waves and T-Wave Inversion Associated With Early Repolarization

Abhimanyu Uberoi; Karim Sallam; Marco V Perez; Nikhil A. Jain; Euan A. Ashley; Victor F. Froelicher

100 per sample. CONCLUSIONS Accurate, high-throughput detection of mutations across numerous cardiac genes is achievable with complementary long padlock probe technology. Moreover, this format allows facile insertion of additional probes as more cardiomyopathy and congenital heart disease genes are discovered, giving researchers a powerful new tool for DNA mutation detection and discovery.


Nature Biomedical Engineering | 2017

Transcriptomic and epigenomic differences in human induced pluripotent stem cells generated from six reprogramming methods

Jared M. Churko; Jaecheol Lee; Mohamed Ameen; Mingxia Gu; Meenakshi Venkatasubramanian; Sebastian Diecke; Karim Sallam; Hogune Im; Gavin Wang; Joseph D. Gold; Nathan Salomonis; Michael Snyder; Joseph C. Wu

OBJECTIVE To evaluate the prevalence of early polarization (ER) in a stable population and to evaluate the prognostic significance of the association or absence of Q waves or T-wave inversion (TWI). PATIENTS AND METHODS In this retrospective study performed at the university-affiliated Palo Alto Veterans Affairs Health Care Center from March 1, 1987, through December 31, 1999, we evaluated outpatient electrocardiograms. Vital status and cause of death were determined in all patients, with a mean ± SD follow-up of 7.6±3.8 years. RESULTS Of the 29,281 patients, 87% were men and 13% were African American. Inferior or lateral ER was present in 664 patients (2.3%): in inferior leads in 185 (0.6%), in lateral leads in 479 (1.6%) , and in both inferior and lateral leads in 163 (0.6%). Only when Q waves or TWI accompanied ER was there an increased risk of cardiovascular death (Cox proportional hazards regression model, 5.0; 95% confidence interval, 3.4-7.2; P<.001). CONCLUSION Common patterns of ER without concomitant Q waves or TWI are not associated with increased risk of cardiovascular death; however, when either occurs with ER, there is a hazard ratio of 5.0. These findings confirm that ER is a benign entity; however, the presence of Q waves or TWI with ER is predictive of increased cardiovascular death.


Annals of Noninvasive Electrocardiology | 2012

Natural history of early repolarization in the inferior leads.

Ricardo Stein; Karim Sallam; Chandana Adhikarla; Madhavi Boga; Alexander D. Wood; Victor F. Froelicher

Many reprogramming methods can generate human induced pluripotent stem cells (hiPSCs) that closely resemble human embryonic stem cells (hESCs). This has led to assessments of how similar hiPSCs are to hESCs, by evaluating differences in gene expression, epigenetic marks and differentiation potential. However, all previous studies were performed using hiPSCs acquired from different laboratories, passage numbers, culturing conditions, genetic backgrounds and reprogramming methods, all of which may contribute to the reported differences. Here, by using high-throughput sequencing under standardized cell culturing conditions and passage number, we compare the epigenetic signatures (H3K4me3, H3K27me3 and HDAC2 ChIP-seq profiles) and transcriptome differences (by RNA-seq) of hiPSCs generated from the same primary fibroblast population by using six different reprogramming methods. We found that the reprogramming method impacts the resulting transcriptome and that all hiPSC lines could terminally differentiate, regardless of the reprogramming method. Moreover, by comparing the differences between the hiPSC and hESC lines, we observed a significant proportion of differentially expressed genes that could be attributed to polycomb repressive complex targets.Epigenetic and transcriptomic differences in human induced pluripotent stem cells generated from the same fibroblast population reveals that the reprogramming method affects the cells’ gene-expression levels but not their differentiation potential.


Methods of Molecular Biology | 2010

Embryonic stem cell biology: insights from molecular imaging.

Karim Sallam; Joseph C. Wu

Aims: Though early repolarization (ER) in the inferior leads has been associated with increased cardiovascular risk, its natural history is uncertain. We aimed to study the serial electrocardiographic behavior of inferior ER and understand factors associated with that behavior.

Collaboration


Dive into the Karim Sallam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge