Karima Begriche
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karima Begriche.
Journal of Hepatology | 2011
Karima Begriche; Julie Massart; Marie-Anne Robin; Annie Borgne-Sanchez; Bernard Fromenty
Numerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis).
Journal of Pharmacology and Experimental Therapeutics | 2012
Jacinthe Aubert; Karima Begriche; Matthieu Delannoy; Isabelle Morel; Julie Pajaud; Catherine Ribault; Sylvie Lepage; Mitchell R. McGill; Catherine Lucas-Clerc; Bruno Turlin; Marie-Anne Robin; Hartmut Jaeschke; Bernard Fromenty
Clinical investigations suggest that hepatotoxicity after acetaminophen (APAP) overdose could be more severe in the context of obesity and nonalcoholic fatty liver disease. The pre-existence of fat accumulation and CYP2E1 induction could be major mechanisms accounting for such hepatic susceptibility. To explore this issue, experiments were performed in obese diabetic ob/ob and db/db mice. Preliminary investigations performed in male and female wild-type, ob/ob, and db/db mice showed a selective increase in hepatic CYP2E1 activity in female db/db mice. However, liver triglycerides in these animals were significantly lower compared with ob/ob mice. Next, APAP (500 mg/kg) was administered in female wild-type, ob/ob, and db/db mice, and investigations were carried out 0.5, 2, 4, and 8 h after APAP intoxication. Liver injury 8 h after APAP intoxication was higher in db/db mice, as assessed by plasma transaminases, liver histology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In db/db mice, however, the extent of hepatic glutathione depletion, levels of APAP-protein adducts, c-Jun N-terminal kinase activation, changes in gene expression, and mitochondrial DNA levels were not greater compared with the other genotypes. Furthermore, in the db/db genotype plasma lactate and β-hydroxybutyrate were not specifically altered, whereas the plasma levels of APAP-glucuronide were intermediary between wild-type and ob/ob mice. Thus, early APAP-induced hepatotoxicity was greater in db/db than ob/ob mice, despite less severe fatty liver and similar basal levels of transaminases. Hepatic CYP2E1 induction could have an important pathogenic role when APAP-induced liver injury occurs in the context of obesity and related metabolic disorders.
Journal of Biological Chemistry | 2011
Karima Begriche; Peter R. Levasseur; Jingying Zhang; Jari Rossi; Danielle Skorupa; Laura A. Solt; Brandon Young; Thomas P. Burris; Daniel L. Marks; Randall L. Mynatt; Andrew A. Butler
Background: Conditional gene targeting methods were used to investigate the role of melanocortin-3 receptors (MC3Rs). Results: MC3Rs expressed in the brain are not sufficient to defend against diet-induced obesity but can improve metabolic homeostasis. Conclusion: The role of MC3Rs in energy homeostasis involves central and peripheral actions. Significance: This is the first evidence suggesting a role for central and peripheral MC3Rs in energy homeostasis. The melanocortin-3 receptor (MC3R) gene is pleiotropic, influencing body composition, natriuresis, immune function, and entrainment of circadian rhythms to nutrient intake. MC3Rs are expressed in hypothalamic and limbic regions of the brain and in peripheral tissues. To investigate the roles of central MC3Rs, we inserted a “lox-stop-lox” (LoxTB) 5′ of the translation initiation codon of the mouse Mc3r gene and reactivated transcription using neuron-specific Cre transgenic mice. As predicted based on earlier observations of Mc3r knock-out mice, Mc3rTB/TB mice displayed reduced lean mass, increased fat mass, and accelerated diet-induced obesity. Surprisingly, rescuing Mc3r expression in the nervous system using the Nestin-Cre transgene only partially rescued obesity in chow-fed conditions and had no impact on the accelerated diet-induced obesity phenotype. The ventromedial hypothalamus (VMH), a critical node in the neural networks regulating feeding-related behaviors and metabolic homeostasis, exhibits dense Mc3r expression relative to other brain regions. To target VMH MC3R expression, we used the steroidogenic factor-1 Cre transgenic mouse. Although restoring VMH MC3R signaling also had a modest impact on obesity, marked improvements in metabolic homeostasis were observed. VMH MC3R signaling was not sufficient to rescue the lean mass phenotype or the regulation of behaviors anticipating food anticipation. These results suggest that actions of MC3Rs impacting on energy homeostasis involve both central and peripheral sites of action. The impact of central MC3Rs on behavior and metabolism involves divergent pathways; VMH MC3R signaling improves metabolic homeostasis but does not significantly impact on the expression of behaviors anticipating nutrient availability.
The FASEB Journal | 2010
Gregory M. Sutton; Karima Begriche; K. Ganesh Kumar; Jeffrey M. Gimble; Diego Perez-Tilve; Ruben Nogueiras; Ryan P. McMillan; Matthew W. Hulver; Matthias H. Tschöp; Andrew A. Butler
Melanocortin‐3 receptors (Mc3rs) in the central nervous system are involved in expression of anticipatory rhythms and synchronizing clocks maintaining circadian rhythms during restricted feeding (RF) [mice housed under a 12‐h light‐dark cycle with lights on between zeitgeber time (ZT) 0 to ZT12 fed 60% of normal calories between ZT7 and ZT11]. Because the systems governing circadian rhythms are important for adaptation to RF, we investigated whether Mc3rs are required for metabolic adaption to RF. Mc3r‐/‐ mice subjected to RF exhibited normal weight loss; however, they developed hyperinsulinemia, glucose intolerance, increased expression of lipogenic genes, and increased ketogenesis relative to controls. Rhythmic expression of transcription factors regulating liver clock activity and energy metabolism (Bmal1, Rev‐erba, Pgc1, Foxo1, Hnf4a, and Pck1) was severely compromised in Mc3r‐/‐ mice during RF. Inhibition of neural melanocortin receptors by agouti‐related peptide also attenuated rhythmicity in the hepatic expression of these genes during RF. Collectively, these data suggest that neural Mc3rs are important for adapting metabolism and maintaining rhythms of liver metabolism during periods when feeding is restricted to the light cycle.—Sutton, G. M., Begriche, K., Kumar, K. G., Gimble, J. M., Perez‐Tilve, D., Nogueiras, R., McMillan, R. P., Hulver, M. W., Tschöp, M. H., Butler, A. A. Central nervous system melanocortin‐3 receptors are required for synchronizing metabolism during entrainment to restricted feeding during the light cycle. FASEB J. 24, 862–872 (2010). www.fasebj.org
Genes, Brain and Behavior | 2012
Karima Begriche; Oliver J. Marston; Jari Rossi; Luke K. Burke; Patricia McDonald; Lora K. Heisler; Andrew A. Butler
The central nervous melanocortin system forms a neural network that maintains energy homeostasis. Actions involving neural melanocortin‐3 receptors (MC3Rs) regulate the expression rhythms in ingestive behaviors and metabolism anticipating nutrient intake. Here, we characterized the response of Mc3r knockout (Mc3r−/−) and wild type (WT) mice to a restricted feeding (RF) schedule where food access was limited to a 4‐h period mid light cycle using a mechanical barrier. Mc3r−/− mice adapted poorly to the food restriction schedule. Anticipatory activity and the initial bout of intense feeding activity associated with granting food access were attenuated in Mc3r−/− mice, resulting in increased weight loss relative to controls. To investigate whether activity in specific hypothalamic nuclei contribute to the Mc3r−/− phenotype observed, we assessed hypothalamic FOS‐immunoreactivity (FOS‐IR) associated with food restriction. Food access markedly increased FOS‐IR in the dorsomedial hypothalamus (DMH), but not in the suprachiasmatic or ventromedial hypothalamic nuclei (SCN and VMN, respectively) compared to ad libitum fed mice. Mc3r−/− mice displayed a significant reduction in FOS‐IR in the DMH during feeding. Analysis of MC3R signaling in vitro indicated dose‐dependent stimulation of the extracellular signal‐regulated kinase (ERK) pathway by the MC3R agonist d‐Trp(8)‐γMSH. Treatment of WT mice with d‐Trp(8)‐γMSH administered intracerebroventricularly increased the number of pERK neurons 1.7‐fold in the DMH. These observations provide further support for the involvement of the MC3Rs in regulating adaptation to food restriction. Moreover, MC3Rs may modulate the activity of neurons in the DMH, a region previously linked to the expression of the anticipatory response to RF.
American Journal of Physiology-endocrinology and Metabolism | 2008
Karima Begriche; Philippe Lettéron; Adjé Abbey-Toby; Nathalie Vadrot; Marie-Anne Robin; André Bado; Dominique Pessayre; Bernard Fromenty
Partial leptin deficiency is not uncommon in the general population. We hypothesized that leptin insufficiency could favor obesity, nonalcoholic steatohepatitis (NASH), and other metabolic abnormalities, particularly under high calorie intake. Thus, mice partially deficient in leptin (ob/+) and their wild-type (+/+) littermates were fed for 4 mo with a standard-calorie (SC) or a high-calorie (HC) diet. Some ob/+ mice fed the HC diet were also treated weekly with leptin. Our results showed that, when fed the SC diet, ob/+ mice did not present significant metabolic abnormalities except for elevated levels of plasma adiponectin. Under high-fat feeding, increased body fat mass, hepatic steatosis, higher plasma total cholesterol, and glucose intolerance were observed in +/+ mice, and these abnormalities were further enhanced in ob/+ mice. Furthermore, some metabolic disturbances, such as blunted plasma levels of leptin and adiponectin, reduced UCP1 expression in brown adipose tissue, increased plasma liver enzymes, beta-hydroxybutyrate and triglycerides, and slight insulin resistance, were observed only in ob/+ mice fed the HC diet. Whereas de novo fatty acid synthesis in liver was decreased in +/+ mice fed the HC diet, it was disinhibited in ob/+ mice along with the restoration of the expression of several lipogenic genes. Enhanced expression of several genes involved in fatty acid oxidation was also observed only in ob/+ animals. Leptin supplementation alleviated most of the metabolic abnormalities observed in ob/+ fed the HC diet. Hence, leptin insufficiency could increase the risk of obesity, NASH, glucose intolerance, and hyperlipidemia in a context of calorie overconsumption.
Progress in Molecular Biology and Translational Science | 2013
Karima Begriche; Clemence Girardet; Patricia McDonald; Andrew A. Butler
Attenuated activity of the central nervous melanocortin system causes obesity and insulin resistance. Obese rodents treated with melanocortins exhibit improvements in obesity and metabolic homeostasis that are not mutually dependent, suggesting metabolic actions that are independent of weight changes. These responses are generally thought to involve G-protein-coupled receptors expressed in the brain. Melanocortin-4 receptors (MC4Rs) regulate satiety and autonomic nervous system and thyroid function. MC3Rs are expressed in hypothalamic and limbic regions involved in controlling ingestive behaviors and autonomic function. Mc3r-/- mice exhibit increased adiposity and an accelerated diet-induced obesity. While this phenotype is not dependent on hyperphagia, data on the regulation of food intake by MC3Rs are inconsistent. Recent investigations by our laboratory suggest a unique combination of behavioral and metabolic disorders in Mc3r-/- mice. MC3Rs are critical for the expression of the anticipatory response and metabolic homeostasis when food intake occurs outside the normal voluntary rhythms driven by photoperiod. Using a Cre-Lox strategy, we can now investigate MC3Rs expressed in different brain regions and organ systems in the periphery. While focusing on the functions of neural MC3Rs, early results suggest an additional layer of complexity with central and peripheral MC3Rs involved in the defense of body weight.
Physiology & Behavior | 2011
Karima Begriche; Gregory M. Sutton; Andrew A. Butler
The central nervous melanocortin system is a neural network linking nutrient-sensing systems with hypothalamic, limbic and hindbrain neurons regulating behavior and metabolic homeostasis. Primary melanocortin neurons releasing melanocortin receptor ligands residing in the hypothalamic arcuate nucleus are regulated by nutrient-sensing and metabolic signals. A smaller group of primary neurons releasing melanocortin agonists in the nucleus tractus solitarius in the brainstem are also regulated by signals of metabolic state. Two melanocortin receptors regulate energy homeostasis. Melanocortin-4 receptors regulate satiety and autonomic outputs controlling peripheral metabolism. The functions of melanocortin-3 receptors (MC3R) expressed in hypothalamic and limbic structures are less clear. Here we discuss published data and preliminary observations from our laboratory suggesting that neural MC3R regulate inputs into systems governing the synchronization of rhythms in behavior and metabolism with nutrient intake. Mice subjected to a restricted feeding protocol, where a limited number of calories are presented at a 24h interval, rapidly exhibit bouts of increased wakefulness and activity which anticipate food presentation. The full expression of these responses is dependent on MC3R. Moreover, MC3R knockout mice are unique in exhibiting a dissociation of weight loss from improved glucose homeostasis when subject to a restricted feeding protocol. While mice lacking MC3R fed ad libitum exhibit normal to moderate hyperinsulinemia, when subjected to a restricted protocol they develop hyperglycemia, glucose intolerance, and dyslipidemia. Collectively, our data suggest that the central nervous melanocortin system is a point convergence in the control of energy balance and the expression of rhythms anticipating nutrient intake.
Obesity Reviews | 2009
Karima Begriche; Gregory M. Sutton; Jidong Fang; Andrew A. Butler
Obesity, insulin resistance and increased propensity for type 2 diabetes and cardiovascular disease result from an imbalance between energy intake and expenditure. The cloning of genes involved in energy homeostasis produced a simple feedback model for the homeostatic regulation of adipose mass. Serum leptin secreted from adipocytes signals nutrient sufficiency, curbing appetite and supporting energy expenditure. A rapid decline in leptin during nutrient scarcity instigates adaptive mechanisms, including increased appetite and reduced energy expenditure. Hypothalamic melanocortin neurons are important mediators of this response, integrating inputs of energy status from leptin with other peripheral signals. While this feedback response prolongs survival during fasting, other mechanisms allowing the prediction of nutrient availability also confer a selective advantage. This adaptation has been commonly studied in rodents using restricted feeding paradigms constraining food intake to limited periods at 24‐h intervals. Restricted feeding rapidly elicits rhythmic bouts of activity and wakefulness anticipating food presentation. While the response exhibits features suggesting a clock‐like mechanism, the neuromolecular mechanisms governing expression of food anticipatory behaviours are poorly understood. Here we discuss a model whereby melanocortin neurons regulating the homeostatic adaptation to variable caloric availability also regulate inputs into neural networks governing anticipatory rhythms in wakefulness, activity and metabolism.
Journal of Pharmacology and Experimental Therapeutics | 2018
Dounia Le Guillou; Simon Bucher; Karima Begriche; Delphine Hoët; Anne Lombès; Gilles Labbe; Bernard Fromenty
Although mitochondriotoxicity plays a major role in drug-induced hepatotoxicity, alteration of mitochondrial DNA (mtDNA) homeostasis has been described only with a few drugs. Because it requires long drug exposure, this mechanism of toxicity cannot be detected with investigations performed in isolated liver mitochondria or cultured cells exposed to drugs for several hours or a few days. Thus, a first aim of this study was to determine whether a 2-week treatment with nine hepatotoxic drugs could affect mtDNA homeostasis in HepaRG cells. Previous investigations with these drugs showed rapid toxicity on oxidative phosphorylation but did not address the possibility of delayed toxicity secondary to mtDNA homeostasis impairment. The maximal concentration used for each drug induced about 10% cytotoxicity. Two other drugs, zalcitabine and linezolid, were used as positive controls for their respective effects on mtDNA replication and translation. Another goal was to determine whether drug-induced mitochondriotoxicity could be modulated by lipid overload mimicking nonalcoholic fatty liver. Among the nine drugs, imipramine and ritonavir induced mitochondrial effects suggesting alteration of mtDNA translation. Ritonavir toxicity was stronger in nonsteatotic cells. None of the nine drugs decreased mtDNA levels. However, increased mtDNA was observed with five drugs, especially in nonsteatotic cells. The mtDNA levels could not be correlated with the expression of key factors involved in mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), PGC1β, and AMP-activated protein kinase α-subunit. Hence, drug-induced impairment of mtDNA translation might not be rare, and increased mtDNA levels could be a frequent adaptive response to slight energy shortage. Nevertheless, this adaptation could be impaired by lipid overload.