Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kariman Chaba is active.

Publication


Featured researches published by Kariman Chaba.


Nature Medicine | 2011

Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors

Nicolas F. Delahaye; Sylvie Rusakiewicz; Isabelle Martins; Cédric Ménard; Stephan Roux; Luc Lyonnet; Pascale Paul; Matthieu Sarabi; Nathalie Chaput; Michaela Semeraro; Véronique Minard-Colin; Vichnou Poirier-Colame; Kariman Chaba; Caroline Flament; Véronique Baud; Hélène Authier; Saadia Kerdine-Römer; Marc Pallardy; Isabelle Cremer; Laetitia Peaudecerf; Benedita Rocha; Dominique Valteau-Couanet; Javier Celis Gutierrez; Jacques A. Nunès; Frédéric Commo; Sylvie Bonvalot; Nicolas Ibrahim; Philippe Terrier; Paule Opolon; Cristina Bottino

The natural killer (NK) cell receptor NKp30 is involved in the recognition of tumor and dendritic cells (DCs). Here we describe the influence of three NKp30 splice variants on the prognosis of gastrointestinal sarcoma (GIST), a malignancy that expresses NKp30 ligands and that is treated with NK-stimulatory KIT tyrosine kinase inhibitors. Healthy individuals and those with GIST show distinct patterns of transcription of functionally different NKp30 isoforms. In a retrospective analysis of 80 individuals with GIST, predominant expression of the immunosuppressive NKp30c isoform (over the immunostimulatory NKp30a and NKp30b isoforms) was associated with reduced survival of subjects, decreased NKp30-dependent tumor necrosis factor-α (TNF-α) and CD107a release, and defective interferon-γ (IFN-γ) and interleukin-12 (IL-12) secretion in the NK-DC cross-talk that could be restored by blocking of IL-10. Preferential NKp30c expression resulted partly from a single-nucleotide polymorphism at position 3790 in the 3′ untranslated region of the gene encoding NKp30. The genetically determined NKp30 status predicts the clinical outcomes of individuals with GIST independently from KIT mutation.


Cancer Research | 2013

Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors

Sylvie Rusakiewicz; Michaela Semeraro; Matthieu Sarabi; Mélanie Desbois; Clara Locher; Rosa Méndez; Nadege Vimond; Angel Concha; Federico Garrido; Nicolas Isambert; L. Chaigneau; Valérie Le Brun-Ly; Patrice Dubreuil; Isabelle Cremer; Anne Caignard; Vichnou Poirier-Colame; Kariman Chaba; Caroline Flament; Niels Halama; Dirk Jäger; Alexander M.M. Eggermont; Sylvie Bonvalot; Frédéric Commo; Philippe Terrier; Paule Opolon; Jean-François Emile; Jean-Michel Coindre; Guido Kroemer; Nathalie Chaput; Axel Le Cesne

Cancer immunosurveillance relies on effector/memory tumor-infiltrating CD8(+) T cells with a T-helper cell 1 (TH1) profile. Evidence for a natural killer (NK) cell-based control of human malignancies is still largely missing. The KIT tyrosine kinase inhibitor imatinib mesylate markedly prolongs the survival of patients with gastrointestinal stromal tumors (GIST) by direct effects on tumor cells as well as by indirect immunostimulatory effects on T and NK cells. Here, we investigated the prognostic value of tumor-infiltrating lymphocytes (TIL) expressing CD3, Foxp3, or NKp46 (NCR1) in a cohort of patients with localized GIST. We found that CD3(+) TIL were highly activated in GIST and were especially enriched in areas of the tumor that conserve class I MHC expression despite imatinib mesylate treatment. High densities of CD3(+) TIL predicted progression-free survival (PFS) in multivariate analyses. Moreover, GIST were infiltrated by a homogeneous subset of cytokine-secreting CD56(bright) (NCAM1) NK cells that accumulated in tumor foci after imatinib mesylate treatment. The density of the NK infiltrate independently predicted PFS and added prognostic information to the Miettinen score, as well as to the KIT mutational status. NK and T lymphocytes preferentially distributed to distinct areas of tumor sections and probably contributed independently to GIST immunosurveillance. These findings encourage the prospective validation of immune biomarkers for optimal risk stratification of patients with GIST.


Science | 2015

Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1

Erika Vacchelli; Yuting Ma; Elisa E. Baracco; Antonella Sistigu; David Enot; Federico Pietrocola; Heng Yang; Sandy Adjemian; Kariman Chaba; Michaela Semeraro; Michele Signore; Adele De Ninno; Valeria Lucarini; Francesca Peschiaroli; Luca Businaro; Annamaria Gerardino; Gwenola Manic; Thomas Ulas; Patrick Günther; Joachim L. Schultze; Oliver Kepp; Gautier Stoll; Celine Lefebvre; Claire Mulot; Francesca Castoldi; Sylvie Rusakiewicz; Sylvain Ladoire; Lionel Apetoh; José Manuel Bravo-San Pedro; Monica Lucattelli

How dying tumor cells get noticed Besides killing tumor cells directly, some chemotherapies, such as anthracyclines, also activate the immune system to kill tumors. Vacchelli et al. discovered that in mice, anthracycline-induced antitumor immunity requires immune cells to express the protein formyl peptide receptor 1 (FPR1). Dendritic cells (DCs) near tumors expressed especially high amounts of FPR1. DCs normally capture fragments of dying tumor cells and use them to activate nearby T cells to kill tumors, but DCs lacking FPR1 failed to do this effectively. Individuals with breast or colon cancer expressing a variant of FPR1 and treated with anthracyclines showed poor metastasis-free and overall survival. Thus, FPR1 may affect anti-tumor immunity in people, too. Science, this issue p. 972 Formyl peptide receptor 1 helps the immune system sense dying tumor cells. Antitumor immunity driven by intratumoral dendritic cells contributes to the efficacy of anthracycline-based chemotherapy in cancer. We identified a loss-of-function allele of the gene coding for formyl peptide receptor 1 (FPR1) that was associated with poor metastasis-free and overall survival in breast and colorectal cancer patients receiving adjuvant chemotherapy. The therapeutic effects of anthracyclines were abrogated in tumor-bearing Fpr1−/− mice due to impaired antitumor immunity. Fpr1-deficient dendritic cells failed to approach dying cancer cells and, as a result, could not elicit antitumor T cell immunity. Experiments performed in a microfluidic device confirmed that FPR1 and its ligand, annexin-1, promoted stable interactions between dying cancer cells and human or murine leukocytes. Altogether, these results highlight the importance of FPR1 in chemotherapy-induced anticancer immune responses.


Cell Reports | 2012

Prognostic Impact of Vitamin B6 Metabolism in Lung Cancer

Lorenzo Galluzzi; Ilio Vitale; Laura Senovilla; Ken André Olaussen; Guillaume Pinna; Tobias Eisenberg; Aicha Goubar; Isabelle Martins; Judith Michels; Gueorgui Kratassiouk; Didac Carmona-Gutierrez; Marie Scoazec; Erika Vacchelli; Frederic Schlemmer; Oliver Kepp; Shensi Shen; Mireia Niso-Santano; Eugenia Morselli; Alfredo Criollo; Sandy Adjemian; Mohamed Jemaà; Kariman Chaba; Claire Pailleret; Mickaël Michaud; Federico Pietrocola; Nicolas Tajeddine; Thibault de La Motte Rouge; Natalia Araujo; Nadya Morozova; Thomas Robert

Patients with non-small cell lung cancer (NSCLC) are routinely treated with cytotoxic agents such as cisplatin. Through a genome-wide siRNA-based screen, we identified vitamin B6 metabolism as a central regulator of cisplatin responses in vitro and in vivo. By aggravating a bioenergetic catastrophe that involves the depletion of intracellular glutathione, vitamin B6 exacerbates cisplatin-mediated DNA damage, thus sensitizing a large panel of cancer cell lines to apoptosis. Moreover, vitamin B6 sensitizes cancer cells to apoptosis induction by distinct types of physical and chemical stress, including multiple chemotherapeutics. This effect requires pyridoxal kinase (PDXK), the enzyme that generates the bioactive form of vitamin B6. In line with a general role of vitamin B6 in stress responses, low PDXK expression levels were found to be associated with poor disease outcome in two independent cohorts of patients with NSCLC. These results indicate that PDXK expression levels constitute a biomarker for risk stratification among patients with NSCLC.


Science Translational Medicine | 2013

NCR3/NKp30 Contributes to Pathogenesis in Primary Sjögren’s Syndrome

Sylvie Rusakiewicz; Gaetane Nocturne; Thierry Lazure; Michaela Semeraro; Caroline Flament; Sophie Caillat-Zucman; Damien Sene; Nicolas Delahaye; Eric Vivier; Kariman Chaba; Vichnou Poirier-Colame; Gunnel Nordmark; Maija-Leena Eloranta; Per Eriksson; Elke Theander; Helena Forsblad-d'Elia; Roald Omdal; Marie Wahren-Herlenius; Roland Jonsson; Lars Rönnblom; Joanne Nititham; Kimberly E. Taylor; Christopher J. Lessard; Kathy L. Sivils; Jacques-Eric Gottenberg; Lindsey A. Criswell; Corinne Miceli-Richard; Laurence Zitvogel; Xavier Mariette

Genetic and functional analyses implicate NCR3/NKp30 in the pathogenesis of primary Sjögren’s syndrome. Sjögren’s Research to Make Your Mouth Water Sjögren’s syndrome is an autoimmune disorder where the body’s own immune cells attack and destroy the exocrine glands that produce such things as tears and saliva. Some patients may have only minor irritation, whereas others may have more serious systemic effects. Sjögren’s syndrome is most common in women over 40, and treatment only attempts to alleviate the symptoms—there is no cure. Now, Rusakiewicz et al. implicate natural killer (NK) cells in the pathogenesis of Sjögren’s syndrome. The authors found that a genetic polymorphism is NKp30, an NK cell–activating receptor, associated with susceptibility to Sjögren’s syndrome in human patients compared with healthy controls. NK cells in these patients expressed high levels of NKp30 and secreted more proinflammatory cytokines. What’s more, these NK cells accumulated in inflammatory foci in minor salivary glands, and salivary epithelial cells expressed B7H6, a ligand that activates NKp30. These data strongly suggest that NK cells may contribute to Sjögren’s syndrome pathogenesis, and put forth NKp30 as a therapeutic target, providing a potential oasis for Sjögren’s patients. Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease characterized by a lymphocytic exocrinopathy. However, patients often have evidence of systemic autoimmunity, and they are at markedly increased risk for the development of non- Hodgkin’s lymphoma. Similar to other autoimmune disorders, a strong interferon (IFN) signature is present among subsets of pSS patients, although the precise etiology remains uncertain. NCR3/NKp30 is a natural killer (NK)–specific activating receptor regulating the cross talk between NK and dendritic cells and type II IFN secretion. We performed a case-control study of genetic polymorphisms of the NCR3/NKp30 gene and found that rs11575837 (G>A) residing in the promoter was associated with reduced gene transcription and function as well as protection to pSS. We also demonstrated that circulating levels of NCR3/NKp30 were significantly increased among pSS patients compared with controls and correlated with higher NCR3/NKp30 but not CD16-dependent IFN-γ secretion by NK cells. Excess accumulation of NK cells in minor salivary glands correlated with the severity of the exocrinopathy. B7H6, the ligand of NKp30, was expressed by salivary epithelial cells. These findings suggest that NK cells may promote an NKp30-dependent inflammatory state in salivary glands and that blockade of the B7H6/NKp30 axis could be clinically relevant in pSS.


The EMBO Journal | 2015

Unsaturated fatty acids induce non‐canonical autophagy

Mireia Niso-Santano; Shoaib Ahmad Malik; Federico Pietrocola; José Manuel Bravo-San Pedro; Guillermo Mariño; Valentina Cianfanelli; Amena BenYounès; Rodrigo Troncoso; Maria Markaki; Valentina Sica; Valentina Izzo; Kariman Chaba; Chantal Bauvy; Nicolas Dupont; Oliver Kepp; Patrick Rockenfeller; Heimo Wolinski; Frank Madeo; Sergio Lavandero; Patrice Codogno; Francis Harper; Gérard Pierron; Nektarios Tavernarakis; Francesco Cecconi; Maria Chiara Maiuri; Lorenzo Galluzzi; Guido Kroemer

To obtain mechanistic insights into the cross talk between lipolysis and autophagy, two key metabolic responses to starvation, we screened the autophagy‐inducing potential of a panel of fatty acids in human cancer cells. Both saturated and unsaturated fatty acids such as palmitate and oleate, respectively, triggered autophagy, but the underlying molecular mechanisms differed. Oleate, but not palmitate, stimulated an autophagic response that required an intact Golgi apparatus. Conversely, autophagy triggered by palmitate, but not oleate, required AMPK, PKR and JNK1 and involved the activation of the BECN1/PIK3C3 lipid kinase complex. Accordingly, the downregulation of BECN1 and PIK3C3 abolished palmitate‐induced, but not oleate‐induced, autophagy in human cancer cells. Moreover, Becn1+/− mice as well as yeast cells and nematodes lacking the ortholog of human BECN1 mounted an autophagic response to oleate, but not palmitate. Thus, unsaturated fatty acids induce a non‐canonical, phylogenetically conserved, autophagic response that in mammalian cells relies on the Golgi apparatus.


Autophagy | 2012

Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens

Sylvain Ladoire; Kariman Chaba; Isabelle Martins; Abdul Qader Sukkurwala; Sandy Adjemian; Mickaël Michaud; Vichnou Poirier-Colame; Felipe Andreiuolo; Lorenzo Galluzzi; Eileen White; Mathias Rosenfeldt; Kevin M. Ryan; Laurence Zitvogel; Guido Kroemer

Autophagy is an evolutionarily conserved catabolic process that involves the entrapment of cytoplasmic components within characteristic vesicles for their delivery to and degradation within lysosomes. Alterations in autophagic signaling are found in several human diseases including cancer. Here, we describe a validated immunohistochemical protocol for the detection of LC3 puncta in human formalin-fixed, paraffin-embedded cancer specimens that can also be applied to mouse tissues. In response to systemic chemotherapy, autophagy-competent mouse tumors exhibited LC3 puncta, which did not appear in mouse cancers that had been rendered autophagy-deficient by the knockdown of Atg5 or Atg7. As compared with normal tissues, LC3 staining was moderately to highly elevated in the large majority of human cancers studied, albeit tumors of the same histological type tended to be highly heterogeneous in the number and intensity of LC3 puncta per cell. Moreover, tumor-infiltrating immune cells often were highly positive for LC3. Altogether, this protocol for LC3 staining appears suitable for the specific detection of LC3 puncta in human specimens, including tissue microarrays. We surmise that this technique can be employed for retrospective or prospective studies involving large series of human tumor samples.


Autophagy | 2015

Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer

Sylvain Ladoire; Frédérique Penault-Llorca; Laura Senovilla; Cécile Dalban; David Enot; Clara Locher; Nicole Prada; Vichnou Poirier-Colame; Kariman Chaba; Laurent Arnould; François Ghiringhelli; Pierre Fumoleau; Marc Spielmann; Suzette Delaloge; Marie Laure Poillot; Patrick Arveux; Aïcha Goubar; Fabrice Andre; Laurence Zitvogel; Guido Kroemer

In spite of adjuvant chemotherapy, a significant fraction of patients with localized breast cancer (BC) relapse after optimal treatment. We determined the occurrence of cytoplasmic MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3B)-positive puncta, as well as the presence of nuclear HMGB1 (high mobility group box 1) in cancer cells within surgical BC specimens by immunohistochemistry, first in a test cohort (152 patients) and then in a validation cohort of localized BC patients who all received adjuvant anthracycline-based chemotherapy (1646 patients). Cytoplasmic LC3B+ puncta inversely correlated with the intensity of SQSTM1 staining, suggesting that a high percentage cells of LC3B+ puncta reflects increased autophagic flux. After setting optimal thresholds in the test cohort, cytoplasmic LC3B+ puncta and nuclear HMGB1 were scored as positive in 27.2% and 28.6% of the tumors, respectively, in the validation cohort, while 8.7% were considered as double positive. LC3B+ puncta or HMGB1 expression alone did not constitute independent prognostic factors for metastasis-free survival (MFS) in multivariate analyses. However, the combined positivity for LC3B+ puncta and nuclear HMGB1 constituted an independent prognostic factor significantly associated with prolonged MFS (hazard ratio: 0.49 95% confidence interval [0.26–0.89]; P = 0.02), and improved breast cancer specific survival (hazard ratio: 0.21 95% confidence interval [0.05–0.85]; P = 0.029). Subgroup analyses revealed that within patients with poor-prognosis BC, HMGB1+ LC3B+ double-positive tumors had a better prognosis than BC that lacked one or both of these markers. Altogether, these results suggest that the combined positivity for LC3B+ puncta and nuclear HMGB1 is a positive predictor for longer BC survival.


Autophagy | 2016

The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer.

Sylvain Ladoire; David Enot; Laura Senovilla; François Ghiringhelli; Vichnou Poirier-Colame; Kariman Chaba; Michaela Semeraro; Marie Chaix; Frédérique Penault-Llorca; Laurent Arnould; Marie Laure Poillot; Patrick Arveux; Suzette Delaloge; Fabrice Andre; Laurence Zitvogel; Guido Kroemer

ABSTRACT Several cell-intrinsic alterations have poor prognostic features in human breast cancer, as exemplified by the absence of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-positive puncta in the cytoplasm (which indicates reduced autophagic flux) or the loss of nuclear HMGB1 expression by malignant cells. It is well established that breast cancer is under strong immunosurveillance, as reflected by the fact that scarce infiltration of the malignant lesion by CD8+ cytotoxic T lymphocytes or comparatively dense infiltration by immunosuppressive cell types (such as FOXP3+ regulatory T cells or CD68+ tumor-associated macrophages), resulting in low CD8+:FOXP3+ or CD8+:CD68+ ratios, has a negative prognostic impact. Here, we reveal the surprising finding that cell-intrinsic features may influence the composition of the immune infiltrate in human breast cancer. Thus, the absence of LC3B puncta is correlated with intratumoral (but not peritumoral) infiltration by fewer CD8+ cells and more FOXP3+ or CD68+ cells, resulting in a major drop in the CD8+:FOXP3+ or CD8+:CD68+ ratios. Moreover, absence of HMGB1 expression in nuclei correlated with a general drop in all immune effectors, in particular FOXP3+ and CD68+ cells, both within the tumor and close to it. Combined analysis of LC3B puncta and HMGB1 expression allowed for improved stratification of patients with respect to the characteristics of their immune infiltrate as well as overall and metastasis-free survival. It can be speculated that blocked autophagy in, or HMGB1 loss from, cancer cells may favor tumor progression due to their negative impact on anticancer immunosurveillance.


Cell Cycle | 2013

Antiapoptotic activity of argon and xenon.

Sabrina Spaggiari; Oliver Kepp; Santiago Rello-Varona; Kariman Chaba; Sandy Adjemian; Jan Pype; Lorenzo Galluzzi; Marc Lemaire; Guido Kroemer

Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.

Collaboration


Dive into the Kariman Chaba's collaboration.

Top Co-Authors

Avatar

David Enot

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Halama

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge