Karin A. Fischer
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karin A. Fischer.
Nature | 2005
Steven D. Hatfield; Karin A. Fischer; Kenji S. Nakahara; Richard W. Carthew; Hannele Ruohola-Baker
One of the key characteristics of stem cells is their capacity to divide for long periods of time in an environment where most of the cells are quiescent. Therefore, a critical question in stem cell biology is how stem cells escape cell division stop signals. Here, we report the necessity of the microRNA (miRNA) pathway for proper control of germline stem cell (GSC) division in Drosophila melanogaster. Analysis of GSCs mutant for dicer-1 (dcr-1), the double-stranded RNaseIII essential for miRNA biogenesis, revealed a marked reduction in the rate of germline cyst production. These dcr-1 mutant GSCs exhibit normal identity but are defective in cell cycle control. On the basis of cell cycle markers and genetic interactions, we conclude that dcr-1 mutant GSCs are delayed in the G1 to S transition, which is dependent on the cyclin-dependent kinase inhibitor Dacapo, suggesting that miRNAs are required for stem cells to bypass the normal G1/S checkpoint. Hence, the miRNA pathway might be part of a mechanism that makes stem cells insensitive to environmental signals that normally stop the cell cycle at the G1/S transition.
Journal of Molecular and Cellular Cardiology | 2014
Xiulan Yang; Marita L. Rodriguez; Lil Pabon; Karin A. Fischer; Hans Reinecke; Michael Regnier; Nathan J. Sniadecki; Hannele Ruohola-Baker; Charles E. Murry
BACKGROUND Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) have great potential as a cell source for therapeutic applications such as regenerative medicine, disease modeling, drug screening, and toxicity testing. This potential is limited, however, by the immature state of the cardiomyocytes acquired using current protocols. Tri-iodo-l-thyronine (T3) is a growth hormone that is essential for optimal heart growth. In this study, we investigated the effect of T3 on hiPSC-CM maturation. METHODS AND RESULTS A one-week treatment with T3 increased cardiomyocyte size, anisotropy, and sarcomere length. T3 treatment was associated with reduced cell cycle activity, manifest as reduced DNA synthesis and increased expression of the cyclin-dependent kinase inhibitor p21. Contractile force analyses were performed on individual cardiomyocytes using arrays of microposts, revealing an almost two-fold higher force per-beat after T3 treatment and also an enhancement in contractile kinetics. This improvement in force generation was accompanied by an increase in rates of calcium release and reuptake, along with a significant increase in sarcoendoplasmic reticulum ATPase expression. Finally, although mitochondrial genomes were not numerically increased, extracellular flux analysis showed a significant increase in maximal mitochondrial respiratory capacity and respiratory reserve capability after T3 treatment. CONCLUSIONS Using a broad spectrum of morphological, molecular, and functional parameters, we conclude that T3 is a driver for hiPSC-CM maturation. T3 treatment may enhance the utility of hiPSC-CMs for therapy, disease modeling, or drug/toxicity screens.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Kavitha T. Kuppusamy; Daniel C. Jones; Henrik Sperber; Anup Madan; Karin A. Fischer; Marita L. Rodriguez; Lil Pabon; Wei Zhong Zhu; Nathaniel L. Tulloch; Xiulan Yang; Nathan J. Sniadecki; Michael A. Laflamme; Walter L. Ruzzo; Charles E. Murry; Hannele Ruohola-Baker
Significance The adult human heart is incapable of significant regeneration after injury. Human embryonic stem cells (hESCs) have the capacity to generate an unlimited number of cardiomyocytes (CMs). However, hESC-derived CMs (hESC-CMs) are at a fetal state with respect to their functional and physiological characteristics, diminishing their utility for modeling adult-related heart disease and therapeutic screening. Thus, the potential for hESC-CMs may improve immensely in cardiac-related therapeutic applications if factors that drive their maturation are uncovered. In this study, we show that members of let-7 miRNA family control CM metabolism, cell size, and force contractility, making them one of the best factors identified to date in promoting maturity of stem cell derivatives. In metazoans, transition from fetal to adult heart is accompanied by a switch in energy metabolism-glycolysis to fatty acid oxidation. The molecular factors regulating this metabolic switch remain largely unexplored. We first demonstrate that the molecular signatures in 1-year (y) matured human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are similar to those seen in in vivo-derived mature cardiac tissues, thus making them an excellent model to study human cardiac maturation. We further show that let-7 is the most highly up-regulated microRNA (miRNA) family during in vitro human cardiac maturation. Gain- and loss-of-function analyses of let-7g in hESC-CMs demonstrate it is both required and sufficient for maturation, but not for early differentiation of CMs. Overexpression of let-7 family members in hESC-CMs enhances cell size, sarcomere length, force of contraction, and respiratory capacity. Interestingly, large-scale expression data, target analysis, and metabolic flux assays suggest this let-7–driven CM maturation could be a result of down-regulation of the phosphoinositide 3 kinase (PI3K)/AKT protein kinase/insulin pathway and an up-regulation of fatty acid metabolism. These results indicate let-7 is an important mediator in augmenting metabolic energetics in maturing CMs. Promoting maturation of hESC-CMs with let-7 overexpression will be highly significant for basic and applied research.
Cell Cycle | 2006
Steven D. Hatfield; Ellen J. Ward; Steven H. Reynolds; Karin A. Fischer; Hannele Ruohola-Baker
One of the key characteristics of stem cells is their capacity for self-renewal for long periods of time. In this respect, stem cells are similar to cancer cells, which also have the ability to escape cell cycle stop signals. Therefore, a critical question in stem cell and cancer biology is how cell division is regulated in these cell types. In this review, we summarize recent progress and describe future challenges to understanding the role the microRNA pathway plays in regulating mechanisms controlling stem cell division.
Development | 2009
Jenn Yah Yu; Steven H. Reynolds; Steve D. Hatfield; Karin A. Fischer; Ellen J. Ward; Dang Long; Ye Ding; Hannele Ruohola-Baker
It is important to understand the regulation of stem cell division because defects in this process can cause altered tissue homeostasis or cancer. The cyclin-dependent kinase inhibitor Dacapo (Dap), a p21/p27 homolog, acts downstream of the microRNA (miRNA) pathway to regulate the cell cycle in Drosophila melanogaster germline stem cells (GSCs). Tissue-extrinsic signals, including insulin, also regulate cell division of GSCs. We report that intrinsic and extrinsic regulators intersect in GSC division control; the Insulin receptor (InR) pathway regulates Dap levels through miRNAs, thereby controlling GSC division. Using GFP-dap 3′UTR sensors in vivo, we show that in GSCs the dap 3′UTR is responsive to Dicer-1, an RNA endonuclease III required for miRNA processing. Furthermore, the dap 3′UTR can be directly targeted by miR-7, miR-278 and miR-309 in luciferase assays. Consistent with this, miR-278 and miR-7 mutant GSCs are partially defective in GSC division and show abnormal cell cycle marker expression, respectively. These data suggest that the GSC cell cycle is regulated via the dap 3′UTR by multiple miRNAs. Furthermore, the GFP-dap 3′UTR sensors respond to InR but not to TGF-β signaling, suggesting that InR signaling utilizes Dap for GSC cell cycle regulation. We further demonstrate that the miRNA-based Dap regulation may act downstream of InR signaling; Dcr-1 and Dap are required for nutrition-dependent cell cycle regulation in GSCs and reduction of dap partially rescues the cell cycle defect of InR-deficient GSCs. These data suggest that miRNA- and Dap-based cell cycle regulation in GSCs can be controlled by InR signaling.
Cell Stem Cell | 2007
Ellen J. Ward; Karin A. Fischer; Jenn Yah Yu; Steven H. Reynolds; Chun Hong Chen; Peizhang Xu; Bruce A. Hay; Hannele Ruohola-Baker
In this study, we uncover a role for microRNAs in Drosophila germline stem cell (GSC) maintenance. Disruption of Dicer-1 function in GSCs during adult life results in GSC loss. Surprisingly, however, loss of Dicer-1 during development does not result in a GSC maintenance defect, although a defect is seen if both Dicer-1 and Dicer-2 function are disrupted. Loss of the bantam microRNA mimics the Dicer-1 maintenance defect when induced in adult GSCs, suggesting that bantam plays a key role in GSC self-renewal. Mad, a component of the TGF-beta pathway, behaves similarly to Dicer-1: adult GSC maintenance requires Mad if it is lost during adult life, but not if it is lost during pupal development. Overall, these results show stage-specific differential sensitivity of GSC maintenance to certain perturbations, and suggest that there may be Dcr-2 dependent redundancy of GSC maintenance mechanisms during development that is lost in later life.
PLOS ONE | 2008
Mariya M. Kucherenko; Mario Pantoja; Andriy S. Yatsenko; Karin A. Fischer; Dariya V. Maksymiv; Yaroslava I. Chernyk; Hannele Ruohola-Baker
The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.
BMC Developmental Biology | 2006
Katherine C. Jordan; Valerie Schaeffer; Karin A. Fischer; Elizabeth E. Gray; Hannele Ruohola-Baker
BackgroundThe follicle cells of the Drosophila egg chamber provide an excellent model in which to study modulation of the cell cycle. During mid-oogenesis, the follicle cells undergo a variation of the cell cycle, endocycle, in which the cells replicate their DNA, but do not go through mitosis. Previously, we showed that Notch signaling is required for the mitotic-to-endocycle transition, through downregulating String/Cdc25, and Dacapo/p21 and upregulating Fizzy-related/Cdh1.ResultsIn this paper, we show that Notch signaling is modulated by Shaggy and temporally induced by the ligand Delta, at the mitotic-to-endocycle transition. In addition, a downstream target of Notch, tramtrack, acts at the mitotic-to-endocycle transition. We also demonstrate that the JNK pathway is required to promote mitosis prior to the transition, independent of the cell cycle components acted on by the Notch pathway.ConclusionThis work reveals new insights into the regulation of Notch-dependent mitotic-to-endocycle switch.
Developmental Dynamics | 2005
Katherine C. Jordan; Steven D. Hatfield; Michael Tworoger; Ellen J. Ward; Karin A. Fischer; Stuart Bowers; Hannele Ruohola-Baker
Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome‐wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS‐caEGFR), and an activated form of the signal transducer Raf (UAS‐caRaf); we also over‐ or ectopically expressed the downstream homeobox transcription factor Mirror (UAS‐mirr) and the ligand‐activating serine protease Rhomboid (UAS‐rho). To reduce pathway activity we used loss‐of‐function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain‐of‐function and loss‐of‐function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways. Developmental Dynamics 232:709–724, 2005.
Disease Models & Mechanisms | 2014
Diem Hang Nguyen-Tran; Nitai C. Hait; Henrik Sperber; Junlin Qi; Karin A. Fischer; Nick Ieronimakis; Mario Pantoja; Aislinn L. Hays; Jeremy C. Allegood; Morayma Reyes; Sarah Spiegel; Hannele Ruohola-Baker
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.