Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Daub is active.

Publication


Featured researches published by Karin Daub.


Circulation | 2008

Platelet-Derived Stromal Cell–Derived Factor-1 Regulates Adhesion and Promotes Differentiation of Human CD34+ Cells to Endothelial Progenitor Cells

Konstantinos Stellos; Harald Langer; Karin Daub; Tanja Schoenberger; Alexandra Gauss; Tobias Geisler; Boris Bigalke; Iris Mueller; Michael Schumm; Iris Schaefer; Peter Seizer; Bjoern F. Kraemer; Dorothea Siegel-Axel; Andreas E. May; Stephan Lindemann; Meinrad Gawaz

Background— Peripheral homing of progenitor cells in areas of diseased organs is critical for tissue regeneration. The chemokine stromal cell–derived factor-1 (SDF-1) regulates homing of CD34+ stem cells. We evaluated the role of platelet-derived SDF-1 in adhesion and differentiation of human CD34+ cells into endothelial progenitor cells. Methods and Results— Adherent platelets express substantial amounts of SDF-1 and recruit CD34+ cells in vitro and in vivo. A monoclonal antibody to SDF-1 or to its counterreceptor, CXCR4, inhibits stem cell adhesion on adherent platelets under high arterial shear in vitro and after carotid ligation in mice, as determined by intravital fluorescence microscopy. Platelets that adhere to human arterial endothelial cells enhance the adhesion of CD34+ cells on endothelium under flow conditions, a process that is inhibited by anti-SDF-1. During intestinal ischemia/reperfusion in mice, anti-SDF-1 and anti-CXCR4, but not isotype control antibodies, abolish the recruitment of CD34+ cells in microcirculation. Moreover, platelet-derived SDF-1 binding to CXCR4 receptor promotes platelet-induced differentiation of CD34+ cells into endothelial progenitor cells, as verified by colony-forming assays in vitro. Conclusions— These findings imply that platelet-derived SDF-1 regulates adhesion of stem cells in vitro and in vivo and promotes differentiation of CD34+ cells to endothelial progenitor cells. Because tissue regeneration depends on recruitment of progenitor cells to peripheral vasculature and their subsequent differentiation, platelet-derived SDF-1 may contribute to vascular and myocardial regeneration.


Circulation Research | 2006

Adherent Platelets Recruit and Induce Differentiation of Murine Embryonic Endothelial Progenitor Cells to Mature Endothelial Cells In Vitro

Harald Langer; Andreas E. May; Karin Daub; Ulrich Heinzmann; Peter Lang; Michael Schumm; Dietmar Vestweber; Steffen Massberg; Tanja Schönberger; Iris Pfisterer; Antonis K. Hatzopoulos; Meinrad Gawaz

The homing and differentiation mechanisms of endothelial progenitor cells (EPCs) at sites of vascular lesions are unclear. To investigate whether platelets play a role in the recruitment and differentiation of EPCs, we made use of a robust mouse embryonic EPC (eEPC) line that reliably differentiates to a mature endothelial phenotype. We found that platelets stimulate chemotaxis and migration of these murine eEPCs. Further, the substantial adhesion of murine eEPCs on immobilized platelets that occurs under dynamic flow conditions is inhibited by neutralizing anti–P-selectin glycoprotein ligand-1 and anti–VLA-4 (β1-integrin) monoclonal antibodies but not by anti-CD11b (aM-integrin; macrophage antigen-1). Coincubation of murine eEPCs with platelets for 5 days induced differentiation of EPCs to mature endothelial cells as verified by positive von Willebrand factor immunofluorescence and detection of Weibel Palade bodies through electron microscopy. We conclude that platelets may play a critical part in the capture and subsequent differentiation of murine eEPCs at sites of vascular lesions, revealing a possible new role of platelets in neoendothelization after vascular injury.


The FASEB Journal | 2006

Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells

Karin Daub; Harald Langer; Peter Seizer; Konstantinos Stellos; Andreas E. May; Pankaj Goyal; Boris Bigalke; Tanja Schönberger; Tobias Geisler; Dorothea Siegel-Axel; Robert A.J. Oostendorp; Stephan Lindemann; Meinrad Gawaz

Recruitment of human CD34+ progenitor cells toward vascular lesions and differentiation into vascular cells has been regarded as a critical initial step in atherosclerosis. Previously we found that adherent platelets represent potential mediators of progenitor cell homing besides their role in thrombus formation. On the other hand, foam cell formation represents a key process in atherosclerotic plaque formation. To investigate whether platelets are involved in progenitor cell recruitment and differentiation into endothelial cells and foam cells, we examined the interactions of platelets and CD34+ progenitor cells. Cocultivation experiments showed that human platelets recruit CD34+ progenitor cells via the specific adhesion receptors P‐selectin/PSGL‐1 and β1‐ and β2‐integrins. Furthermore, platelets were found to induce differentiation of CD34+ progenitor cells into mature foam cells and endothelial cells. Platelet‐induced foam cell generation could be prevented partially by HMG coenzyme A reductase inhibitors via reduction of matrix metallo‐proteinase‐9 (MMP‐9) secretion. Finally, agonists of peroxisome proliferator‐activated receptor‐α and ‐γ attenuated platelet‐induced foam cell generation and production of MMP‐9. The present study describes a potentially important mechanism of platelet‐induced foam cell formation and generation of endothelium in atherogenesis and atheroprogression. The understanding and modulation of these mechanisms may offer new treatment strategies for patients at high risk for atherosclerotic diseases.—Daub, K., Langer, H., Seizer, P., Stellos, K., May, A. E., Goyal, P., Bigalke, B., Schönberger, T., Geisler, T., Siegel‐Axel, D., Oostendorp, R. A. J., Lindemann, S., Gawaz, M. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB J. 20, E1935–E1944 (2006)


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Platelets Recruit Human Dendritic Cells Via Mac-1/JAM-C Interaction and Modulate Dendritic Cell Function In Vitro

Harald Langer; Karin Daub; Gregor Braun; Tanja Schönberger; Andreas E. May; Martin Schaller; Gerburg M. Stein; Konstantinos Stellos; Andreas Bueltmann; Dorothea Siegel-Axel; Hans P. Wendel; Hermann Aebert; Martin Roecken; Peter Seizer; Sentot Santoso; Sebastian Wesselborg; Peter Brossart; Meinrad Gawaz

Objective—Thrombotic events and immunoinflammatory processes take place next to each other during vascular remodeling in atherosclerotic lesions. In this study we investigated the interaction of platelets with dendritic cells (DCs). Methods and Results—The rolling of DCs on platelets was mediated by PSGL-1. Firm adhesion of DCs was mediated through integrin &agr;M&bgr;2 (Mac-1). In vivo, adhesion of DCs to injured carotid arteries in mice was mediated by platelets. Pretreatment with soluble GPVI, which inhibits platelet adhesion to collagen, substantially reduced recruitment of DCs to the injured vessel wall. In addition, preincubation of DCs with sJAM-C significantly reduced their adhesion to platelets. Coincubation of DCs with platelets induced maturation of DCs, as shown by enhanced expression of CD83. In the presence of platelets, DC-induced lymphocyte proliferation was significantly enhanced. Moreover, coincubation of DCs with platelets resulted in platelet phagocytosis by DCs, as verified by different cell phagocytosis assays. Finally, platelet/DC interaction resulted in apoptosis of DCs mediated by a JAM-C–dependent mechanism. Conclusions—Recruitment of DCs by platelets, which is mediated via CD11b/CD18 (Mac-1) and platelet JAM-C, leads to DC activation and platelet phagocytosis. This process may be of importance for progression of atherosclerotic lesions.


Atherosclerosis | 2010

EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation

Peter Seizer; Tanja Schönberger; Moritz Schött; Michael R. Lang; Harald Langer; Boris Bigalke; Björn F. Krämer; Oliver Borst; Karin Daub; Olaf Heidenreich; Roland Schmidt; Stephan Lindemann; Yared Herouy; Meinrad Gawaz; Andreas E. May

UNLABELLED Upon coincubation with platelets, CD34(+) progenitor cells have the potential to differentiate into foam cells, and thereby may promote the progression of atherosclerosis. The exact mechanism of MMP-regulation during the cellular differentiation process to foam cells is still unclear. Thus, we investigated the role of EMMPRIN (CD147) and its ligand cyclophilin A (CyPA) during foam cell formation originating from both monocytes/macrophages and CD34(+) progenitor cells. METHODS AND RESULTS Differentiation of CD34(+) progenitor to foam cells was analyzed in a coculture model of progenitor cells and platelets. While CD34(+) cells did not express EMMPRIN or MT1-MMP, mature foam cells strongly expressed EMMPRIN, which was associated with MT1-MMP expression as well as MMP-9. Gene silencing of EMMPRIN by siRNA during the cell differentiation process hindered not only the upregulation of MMPs (MT1-MMP, MMP-9), but also the secretion of the cytokine M-CSF. During the differentiation process CyPA was substantially released into the supernatant. The presence of the CyPA inhibitor NIM811 significantly reduced MMP-9 secretion during the differentiation process. Similar results were obtained using the classical pathway of foam cell formation by coincubating human macrophages with AcLDL. Additionally, the presence of soluble EMMPRIN ligands (CyPA, recombinant EMMPRIN) further enhanced MMP-9 secretion by mature foam cells. Consistently, CyPA and EMMPRIN were found in atherosclerotic plaques of ApoE-deficient mice by immunohistochemistry. CONCLUSION EMMPRIN is upregulated during the differentiation process from CD34(+) progenitor cells to foam cells, whereas its ligand, CyPA, is released. The CyPA/EMMPRIN activation pathway may play a relevant role in promoting the vulnerability of atherosclerotic plaques.


Journal of Molecular Medicine | 2010

PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1)

Bjoern F. Kraemer; Oliver Borst; Eva-Maria Gehring; Tanja Schoenberger; Benjamin Urban; Elena Ninci; Peter Seizer; Christine Schmidt; Boris Bigalke; Miriam Koch; Ivo Martinovic; Karin Daub; Tobias Merz; Laura Schwanitz; Konstantinos Stellos; Fabienne Fiesel; Martin Schaller; Florian Lang; Meinrad Gawaz; Stephan Lindemann

Platelets have been regarded as static cells that do not move once they adhere to a matrix. The present study explored, whether platelets are able to migrate. In contrast to the current opinion, we found that platelets were mobile, able to migrate over a surface, and transmigrate through a transwell membrane and endothelium toward a source of stromal cell-derived factor 1 (SDF-1). Platelet migration was stimulated by SDF-1, which led to the downstream activation and phosphorylation of Wiskott–Aldrich syndrome protein. SDF-1 signaling and subsequent platelet migration could be inhibited by CXCR4-receptor blocker AMD3100, pertussis toxin, inhibition of phosphoinositol 3-kinase (PI3 kinase) with LY294002 or wortmannin, and disruption of actin polymerization with cytochalasin B. The potential of platelets to migrate in an SDF-1-mediated fashion may redefine the role of platelets in the pathophysiology of vascular inflammation, subsequent atherosclerotic degeneration, and vascular regeneration.


Seminars in Thrombosis and Hemostasis | 2010

Oxidized LDL-Activated Platelets Induce Vascular Inflammation

Karin Daub; Peter Seizer; Konstantinos Stellos; Björn F. Krämer; Boris Bigalke; Martin Schaller; Suzanne Fateh-Moghadam; Meinrad Gawaz; Stephan Lindemann

Platelets are involved in the initiation of atherosclerosis by adherence to inflamed endothelium. Monocytes bind to these platelets and transmigrate into the vessel wall, transforming into macrophages and foam cells. We have previously shown that lipid-laden platelets are phagocytosed by macrophages. In this study we investigated the functional consequences of oxidized low-density lipoprotein (oxLDL) uptake on platelet function and interaction with the endothelium. Human platelets were isolated from healthy donors and activated by adenosine diphosphate. Immunofluorescence microscopy and flow cytometry revealed that oxLDL is located intracellularly in vesicles. With mepacrine costaining and confocal microtomography, we were able to identify dense granules as the vesicles that contain oxLDL. OxLDL-laden platelets induced intercellular adhesion molecule 1 expression in endothelial cells more than exogenous native LDL, oxLDL, and oxLDL-negative platelets. Furthermore, oxLDL-laden platelets induced foam cell development from CD34(+) progenitor cells. On endothelial regeneration, oxLDL-laden platelets had the opposite effect: The number of CD34(+) progenitor cells (colony-forming units) able to transform into endothelial cells was significantly reduced in the presence of oxLDL-platelets, whereas native LDL had no effect. Our results demonstrate that activated platelets internalize oxLDL and that oxLDL-laden platelets activate endothelium, inhibit endothelial regeneration, and promote foam cell development. Platelet oxLDL contributes significantly to vascular inflammation and is able to promote atherosclerosis.


American Heart Journal | 2008

Platelet collagen receptor glycoprotein VI as a possible novel indicator for the acute coronary syndrome.

Boris Bigalke; Tobias Geisler; Konstantinos Stellos; Harald Langer; Karin Daub; Elisabeth Kremmer; Peter Seizer; Andreas E. May; Stephan Lindemann; Meinrad Gawaz

BACKGROUND Platelet collagen receptor glycoprotein VI (GPVI) plays a critical role in acute coronary thrombosis. This prospective study examined the predictive value of GPVI for acute coronary syndromes (ACS) in a large consecutive group of patients with symptomatic coronary artery disease to identify the high-risk cohort with imminent coronary events. METHODS We evaluated 1,003 patients with symptomatic coronary artery disease, verified by coronary angiography, and determined the surface expression of GPVI using flow cytometry. In a subgroup of 471 patients, who were treated with aspirin plus clopidogrel for coronary stenting, adenosine disphosphate (20 micromol/L)-induced platelet aggregation was evaluated. RESULTS Patients with ACS (n = 485) showed a significantly enhanced GPVI expression compared to patients with stable angina pectoris (SAP; n = 518) (mean fluorescence intensity for ACS 19.8 +/- 5.9; SAP 18.7 +/- 8.5, P = .01). Patients with elevated GPVI levels on admission (GPVI cutoff value > or =18.6 mean fluorescence intensity) had a 1.4-fold relative risk for ACS. Logistic regression analysis showed that an elevated platelet GPVI level may indicate ACS independent of biomarkers of myocardial necrosis including troponin, creatine kinase, and creatine kinase-MB. Patients with increased platelet activation (GPVI expression level > or =18.6) showed significant enhanced residual platelet aggregation despite dual antiplatelet therapy compared to patients with low GPVI levels (P = .028). CONCLUSIONS Surface expression of GPVI is enhanced in patients with ACS and indicates an imminent acute coronary event before irreversible myocardial necrosis is evident. High GPVI levels are associated with increased residual platelet aggregation despite antiplatelet therapy. Therefore, GPVI is useful to identify the subgroup of patients with a high risk for coronary stent thrombosis and thromboischemic events.


Seminars in Thrombosis and Hemostasis | 2010

Platelet Aggregates-Induced Human CD34+ Progenitor Cell Proliferation and Differentiation to Macrophages and Foam Cells Is Mediated by Stromal Cell Derived Factor 1 in Vitro

Konstantinos Stellos; Peter Seizer; Boris Bigalke; Karin Daub; Tobias Geisler; Meinrad Gawaz

The chemokine stromal cell derived factor 1 (SDF-1) regulates chemotactic recruitment (homing) and differentiation of CD34 (+) stem cells. Platelets express substantial amounts of SDF-1 upon activation. The aim of the present study was to evaluate the role of SDF-1 in platelet-induced proliferation and differentiation of human CD34 (+) cells to macrophages and foam cells, as well as in regulation of matrix metalloproteinase (MMP)-9 secretion. Co-culture experiments of platelet thrombi (2 x 10(8)/mL) with human CD34 (+) progenitor cells resulted in platelet phagocytosis by the latter, causing their differentiation into CD68-positive macrophages and subsequent Sudan red III-positive foam cells. Platelet aggregates-induced foam cell generation and MMP-9 secretion were attenuated by a neutralizing monoclonal antibody against platelet-derived SDF-1, as evaluated by immunofluorescence microscopy and gelatin zymography. Co-culture experiments of human arterial endothelial cells and human CD34 (+) progenitor cells resulted in a fourfold increased proliferation of CD34 (+) cells in the presence of platelets being mainly regulated by platelet-derived SDF-1 in vitro. These findings imply that in the presence of platelet thrombi, CD34 (+) progenitor cells phagocytize platelets in an SDF-1 dependent manner, causing their differentiation into macrophages and then foam cells, a mechanism most likely contributing to atherogenesis and atheroprogression.


Current Opinion in Lipidology | 2007

Molecular pathways used by platelets to initiate and accelerate atherogenesis.

Stephan Lindemann; Björn F. Krämer; Karin Daub; Konstantinos Stellos; Meinrad Gawaz

Purpose of review The response to injury model in the development of atherosclerosis is broadly accepted by the scientific audience. Platelets are generally not believed to be involved in the initiation of atherosclerosis. New data imply, however, that the response to injury model is too simple for a complete understanding of the inflammatory disease atherosclerosis. The involvement of platelets in the initiation of atherosclerotic lesion formation is critical in directing the atherosclerotic process into regeneration or ongoing vascular injury. Recent findings Platelets internalize oxidized phospholipids and promote foam cell formation. Platelets also recruit circulating blood cells including progenitor cells to the vessel, that are able to differentiate into foam cells or endothelial cells depending on conditions. Platelets express various scavenger receptors that are able to regulate LDL-uptake. LDL-laden platelets are internalized by adherent progenitor cells that in turn differentiate into macrophages and foam cells. Summary An expanding body of evidence continues to build on the role of platelets as initial actors in the development of atherosclerotic lesions. Platelets bind to leukocytes, endothelial cells, and circulating progenitor cells and initiate monocyte transformation into macrophages. Therefore platelets regulate the initiation, development and total extent of atherosclerotic lesions.

Collaboration


Dive into the Karin Daub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Seizer

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge