Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Dedek is active.

Publication


Featured researches published by Karin Dedek.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel

Karin Dedek; Bernhard Kunath; Colette Kananura; Ulrike Reuner; Thomas J. Jentsch; Ortrud K. Steinlein

KCNQ2 and KCNQ3 are two homologous K+ channel subunits that can combine to form heterotetrameric channels with properties of neuronal M channels. Loss-of-function mutations in either subunit can lead to benign familial neonatal convulsions (BFNC), a generalized, idiopathic epilepsy of the newborn. We now describe a syndrome in which BFNC is followed later in life by myokymia, involuntary contractions of skeletal muscles. All affected members of the myokymia/BFNC family carried a mutation (R207W) that neutralized a charged amino acid in the S4 voltage-sensor segment of KCNQ2. This substitution led to a shift of voltage-dependent activation of KCNQ2 and a dramatic slowing of activation upon depolarization. Myokymia is thought to result from hyperexcitability of the lower motoneuron, and indeed both KCNQ2 and KCNQ3 mRNAs were detected in the anterior horn of the spinal cord where the cells of the lower motoneurons arise. We propose that a difference in firing patterns between motoneurons and central neurons, combined with the drastically slowed voltage activation of the R207W mutant, explains why this particular KCNQ2 mutant causes myokymia in addition to BFNC.


The EMBO Journal | 2006

Mice with altered KCNQ4 K + channels implicate sensory outer hair cells in human progressive deafness

Tatjana Kharkovets; Karin Dedek; Hannes Maier; Michaela Schweizer; Darina Khimich; Régis Nouvian; Vitya Vardanyan; Rudolf Leuwer; Tobias Moser; Thomas J. Jentsch

KCNQ4 is an M‐type K+ channel expressed in sensory hair cells of the inner ear and in the central auditory pathway. KCNQ4 mutations underlie human DFNA2 dominant progressive hearing loss. We now generated mice in which the KCNQ4 gene was disrupted or carried a dominant negative DFNA2 mutation. Although KCNQ4 is strongly expressed in vestibular hair cells, vestibular function appeared normal. Auditory function was only slightly impaired initially. It then declined over several weeks in Kcnq4−/− mice and over several months in mice carrying the dominant negative allele. This progressive hearing loss was paralleled by a selective degeneration of outer hair cells (OHCs). KCNQ4 disruption abolished the IK,n current of OHCs. The ensuing depolarization of OHCs impaired sound amplification. Inner hair cells and their afferent synapses remained mostly intact. These cells were only slightly depolarized and showed near‐normal presynaptic function. We conclude that the hearing loss in DFNA2 is predominantly caused by a slow degeneration of OHCs resulting from chronic depolarization.


Pflügers Archiv: European Journal of Physiology | 2001

Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract

Karin Dedek; Siegfried Waldegger

Abstract. The KCNQ1 potassium channel α-subunit can associate with various KCNE β-subunits that drastically influence channel gating. Here we show that in the mouse gastrointestinal tract KCNQ1 is prominently expressed in stomach, small intestine and colon, while KCNE3 is expressed in the colon and to a lesser extent in small intestine. Immunostaining revealed that KCNQ1 colocalizes with KCNE3 in the basolateral membranes of crypt cells of the colon and small intestine. Together with the previously shown electrophysiological properties of KCNQ1/KCNE3 channels, this strongly suggests that they form the basolateral potassium conductance that is required for transepithelial cAMP-stimulated chloride secretion. In the stomach, KCNQ1 is expressed together with the H+/K+-ATPase in the luminal membrane of acid-secreting parietal cells of gastric glands. KCNE2, but neither KCNE1 nor KCNE3 was detected in the stomach by Northern analysis. Similar to KCNQ1, KCNE2 was present in gastric glands in only a subset of cells that probably represent parietal cells. The coexpression of KCNQ1 and KCNE2 in HEK293 cells yielded potassium currents that were open at resting voltages, suggesting that these heteromeric channels may underlie the apical potassium conductance in acid-secreting parietal cells that is necessary for the recycling of potassium ions during acid secretion via the H+/K+-ATPase.


The Journal of Neuroscience | 2005

Deletion of Connexin45 in Mouse Retinal Neurons Disrupts the Rod/Cone Signaling Pathway between AII Amacrine and ON Cone Bipolar Cells and Leads to Impaired Visual Transmission

Stephan Maxeiner; Karin Dedek; Ulrike Janssen-Bienhold; Josef Ammermüller; Hendrik Brune; Taryn Kirsch; Mario Pieper; Joachim Degen; Olaf Krüger; Klaus Willecke; Reto Weiler

Connexin45 (Cx45) is known to be expressed in the retina, but its functional analysis was problematic because general deletion of Cx45 coding DNA resulted in cardiovascular defects and embryonic lethality at embryonic day 10.5. We generated mice with neuron-directed deletion of Cx45 and concomitant activation of the enhanced green fluorescent protein (EGFP). EGFP labeling was observed in bipolar, amacrine, and ganglion cell populations. Intracellular microinjection of fluorescent dyes in EGFP-labeled somata combined with immunohistological markers revealed Cx45 expression in both ON and OFF cone bipolar cells. The scotopic electroretinogram of mutant mice revealed a normal a-wave but a 40% reduction in the b-wave amplitude, similar to that found in Cx36-deficient animals, suggesting a possible defect in the rod pathway of visual transmission. Indeed, neurotransmitter coupling between AII amacrine cells and Cx45-expressing cone bipolar cells was disrupted in Cx45-deficient mice. These data suggest that both Cx45 and Cx36 participate in the formation of functional heterotypic electrical synapses between these two types of retinal neurons that make up the major rod pathway.


Epilepsy Research | 2003

Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2.

Karin Dedek; Lucia Fusco; Nicole Teloy; Ortrud K. Steinlein

Mutations in the voltage gated K(+)-channel gene KCNQ2 are known to cause benign familial neonatal convulsions (BFNC), which are characterized by a benign course, spontaneous remission and normal psychomotor development. Most KCNQ2 mutations can be predicted to truncate the protein. Only a few amino acid exchanges have been found, and their localization was restricted to either the pore region or the fourth or sixth transmembrane region (TM). We have now identified the first KCNQ2 mutation located within TM5, affecting a highly conserved serine in amino acid position 247 of the predicted protein. The clinical history of the two affected family members is not compatible with typical BFNC. The poor outcome in the index patient raises the question if at least some KCNQ2 mutations might increase the risk to develop therapy-resistant epilepsy. Additional studies are needed to evaluate the possibility of a causal relationship between KCNQ2 mutations and severe early infantile epilepsy.


European Journal of Neuroscience | 2006

Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina

Karin Dedek; Konrad Schultz; Mario Pieper; Petra Dirks; Stephan Maxeiner; Klaus Willecke; Reto Weiler; Ulrike Janssen-Bienhold

The primary rod pathway in mammals contains gap junctions between AII amacrine cells and ON cone bipolar cells which relay the rod signal into the cone pathway under scotopic conditions. Two gap junctional proteins, connexin36 (Cx36) and connexin45 (Cx45), appear to play a pivotal role in this pathway because lack of either protein leads to an impairment of visual transmission under scotopic conditions. To investigate whether these connexins form heterotypic gap junctions between ON cone bipolar and AII amacrine cells, we used newly developed Cx45 antibodies and studied the cellular and subcellular distribution of this protein in the mouse retina. Specificity of the Cx45 antibodies was determined, among others, by Western blot and immunostaining of mouse heart, where Cx45 is abundantly expressed. In mouse retina, Cx45 immunosignals were detected in both plexiform layers and the ganglion cell layer. Double staining for Cx45 and Cx36 revealed a partial overlap in the punctate patterns in the ON sublamina of the inner plexiform layer of the retina. We quantified the distributions of these two connexins in the ON sublamina, and detected 30% of the Cx45 signals to be co‐localized with or in close apposition to Cx36 signals. Combining immunostaining and intracellular dye injection revealed an overlap or tight association of Cx36 and Cx45 signals on the terminals of injected AII amacrine and two types of ON cone bipolar cells. Our results provide direct evidence for heterotypic gap junctions composed of Cx36 and Cx45 between AII amacrine and certain types of ON cone bipolar cells.


European Journal of Neuroscience | 2006

Horizontal cell receptive fields are reduced in connexin57-deficient mice.

Jennifer Shelley; Karin Dedek; Timm Schubert; Andreas Feigenspan; Konrad Schultz; Sonja Hombach; Klaus Willecke; Reto Weiler

Horizontal cells are coupled by gap junctions; the extensive coupling of the horizontal cells is reflected in their large receptive fields, which extend far beyond the dendritic arbor of the individual cell. In the mouse retina, horizontal cells express connexin57 (Cx57). Tracer coupling of horizontal cells is impaired in Cx57‐deficient mice, which suggests that the receptive fields of Cx57‐deficient horizontal cells might be similarly reduced. To test this hypothesis we measured the receptive fields of horizontal cells from wildtype and Cx57‐deficient mice. First, we examined the synaptic connections between horizontal cells and photoreceptors: no major morphological alterations were found. Moreover, horizontal cell spacing and dendritic field size were unaffected by Cx57 deletion. We used intracellular recordings to characterize horizontal cell receptive fields. Length constants were computed for each cell using the cells responses to concentric light spots of increasing diameter. The length constant was dependent on the intensity of the stimulus: increasing stimulus intensity reduced the length constant. Deletion of Cx57 significantly reduced horizontal cell receptive field size. Dark resting potentials were strongly depolarized and response amplitudes reduced in Cx57‐deficient horizontal cells compared to the wildtype, suggesting an altered input resistance. This was confirmed by patch‐clamp recordings from dissociated horizontal cells; mean input resistance of Cx57‐deficient horizontal cells was 27% lower than that of wildtype cells. These data thus provide the first quantification of mouse horizontal cell receptive field size and confirm the unique role of Cx57 in horizontal cell coupling and physiology.


PLOS ONE | 2014

Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration.

Blanca Arango-Gonzalez; Dragana Trifunović; Ayse Sahaboglu; Katharina Kranz; Stylianos Michalakis; Pietro Farinelli; Susanne Koch; Fred Koch; Sandra Cottet; Ulrike Janssen-Bienhold; Karin Dedek; Martin Biel; Eberhart Zrenner; Thomas Euler; Per Ekström; Marius Ueffing; François Paquet-Durand

Cell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2, rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfl1, Rpe65 KO), by investigating metabolic processes relevant for different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major importance. Hallmark features of this pathway are activation of histone deacetylase, poly-ADP-ribose-polymerase, and calpain, as well as accumulation of cyclic guanosine monophosphate and poly-ADP-ribose. Our work thus demonstrates the prevalence of alternative cell death mechanisms in inherited retinal degeneration and provides a rational basis for the design of mutation-independent treatments.


PLOS ONE | 2008

Ganglion Cell Adaptability: Does the Coupling of Horizontal Cells Play a Role?

Karin Dedek; Chethan Pandarinath; Nazia M. Alam; Kerstin Wellershaus; Timm Schubert; Klaus Willecke; Glen T. Prusky; Reto Weiler; Sheila Nirenberg

Background The visual system can adjust itself to different visual environments. One of the most well known examples of this is the shift in spatial tuning that occurs in retinal ganglion cells with the change from night to day vision. This shift is thought to be produced by a change in the ganglion cell receptive field surround, mediated by a decrease in the coupling of horizontal cells. Methodology/Principal Findings To test this hypothesis, we used a transgenic mouse line, a connexin57-deficient line, in which horizontal cell coupling was abolished. Measurements, both at the ganglion cell level and the level of behavioral performance, showed no differences between wild-type retinas and retinas with decoupled horizontal cells from connexin57-deficient mice. Conclusion/Significance This analysis showed that the coupling and uncoupling of horizontal cells does not play a dominant role in spatial tuning and its adjustability to night and day light conditions. Instead, our data suggest that another mechanism, likely arising in the inner retina, must be responsible.


The Journal of Comparative Neurology | 2009

Connexin57 is expressed in dendro-dendritic and axo-axonal gap junctions of mouse horizontal cells and its distribution is modulated by light

Ulrike Janssen-Bienhold; Jennifer Trümpler; Gerrit Hilgen; Konrad Schultz; Luis Pérez de Sevilla Müller; Stephan Sonntag; Karin Dedek; Petra Dirks; Klaus Willecke; Reto Weiler

Mouse horizontal cells are coupled by gap junctions composed of connexin57. These gap junctions are regulated by ambient light via multiple neuromodulators including dopamine. In order to analyze the distribution and structure of horizontal cell gap junctions in the mouse retina, and examine the effects of light adaptation on gap junction density, we developed antibodies that detect mouse retinal connexin57. Using immunohistochemistry in retinal slices, flat‐mounted retinas, and dissociated retinal cells, we showed that connexin57 is expressed in the dendrites and axon terminal processes of mouse horizontal cells. No staining was found in retinas of connexin57‐deficient mice. Significantly more connexin57‐positive puncta were found in the distal than in the proximal outer plexiform layer, indicating a higher level of expression in axon terminal processes than in the dendrites. We also examined the gap junctions using immunoelectron microscopy and showed that connexin57 does not form hemichannels in the horizontal cell dendritic tips. Light adaptation resulted in a significant increase in the number of connexin57‐immunoreactive plaques in the outer plexiform layer, consistent with previously reported effects of light adaptation on connexin57 expression in the mouse retina. This study shows for the first time the detailed location of connexin57 expression within mouse horizontal cells, and provides the first ultrastructural data on mouse horizontal cell gap junctions. J. Comp. Neurol. 513:363–374, 2009.

Collaboration


Dive into the Karin Dedek's collaboration.

Top Co-Authors

Avatar

Reto Weiler

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Balzer

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge