Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin E. Finberg is active.

Publication


Featured researches published by Karin E. Finberg.


Nature Genetics | 1999

Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness

Fiona E. Karet; Karin E. Finberg; Rd Nelson; Ahmet Nayir; H Mocan; Sami A. Sanjad; J Rodriguez-Soriano; Fd Santos; Cwrj Cremers; A di Pietro; Bi Hoffbrand; J Winiarski; Aysin Bakkaloglu; Seza Ozen; R Dusunsel; P Goodyer; Sally A. Hulton; Dk Wu; Anne B. Skvorak; Cynthia C. Morton; Mj Cunningham; [No Value] Jha; Richard P. Lifton

H+-ATPases are ubiquitous in nature; V-ATPases pump protons against an electrochemical gradient, whereas F-ATPases reverse the process, synthesizing ATP. We demonstrate here that mutations in ATP6B1, encoding the B-subunit of the apical proton pump mediating distal nephron acid secretion, cause distal renal tubular acidosis, a condition characterized by impaired renal acid secretion resulting in metabolic acidosis. Patients with ATP6B1 mutations also have sensorineural hearing loss; consistent with this finding, we demonstrate expression of ATP6B1 in cochlea and endolymphatic sac. Our data, together with the known requirement for active proton secretion to maintain proper endolymph pH, implicate ATP6B1 in endolymph pH homeostasis and in normal auditory function. ATP6B1 is the first member of the H+-ATPase gene family in which mutations are shown to cause human disease.


Nature Genetics | 2008

Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA)

Karin E. Finberg; Matthew M. Heeney; Dean R. Campagna; Yesim Aydinok; Howard A. Pearson; Kip R. Hartman; Mary Mayo; Stewart M. Samuel; John J. Strouse; Kyriacos Markianos; Nancy C. Andrews; Mark D. Fleming

Iron deficiency is usually attributed to chronic blood loss or inadequate dietary intake. Here, we show that iron deficiency anemia refractory to oral iron therapy can be caused by germline mutations in TMPRSS6, which encodes a type II transmembrane serine protease produced by the liver that regulates the expression of the systemic iron regulatory hormone hepcidin. These findings demonstrate that TMPRSS6 is essential for normal systemic iron homeostasis in humans.


The New England Journal of Medicine | 1996

A Founder Mutation as a Cause of Cerebral Cavernous Malformation in Hispanic Americans

Murat Gunel; Issam A. Awad; Karin E. Finberg; John A. Anson; Gary K. Steinberg; H. Hunt Batjer; Thomas A. Kopitnik; Leslie Morrison; Steven L. Giannotta; Carol Nelson-Williams; Richard P. Lifton

BACKGROUND Cerebral cavernous malformation is a vascular disease of the brain causing headaches, seizures, and cerebral hemorrhage. Familial and sporadic cases are recognized, and a gene causing familial disease has been mapped to chromosome 7. Hispanic Americans have a higher prevalence of cavernous malformation than do other ethnic groups, raising the possibility that affected persons in this population have inherited the same mutation from a common ancestor. METHODS We compared the segregation of genetic markers and clinical cases of cavernous malformation in Hispanic-American kindreds with familial disease; we also compared the alleles for markers linked to cavernous malformation in patients with familial and sporadic cases. RESULTS All kindreds with familial disease showed linkage of cavernous malformation to a short segment of chromosome 7 (odds supporting linkage, 4X10(10).1). Forty-seven affected members of 14 kindreds shared identical alleles for up to 15 markers linked to the cavernous-malformation gene, demonstrating that they had inherited the same mutation from a common ancestor. Ten patients with sporadic cases also shared these same alleles, indicating that they too had inherited the same mutation. Thirty-three asymptomatic carriers of the disease gene were identified, demonstrating the variability and age dependence of the development of symptoms and explaining the appearance of apparently sporadic cases. CONCLUSIONS Virtually all cases of familial and sporadic cavernous malformation among Hispanic Americans of Mexican descent are due to the inheritance of the same mutation from a common ancestor.


Hypertension | 2001

Mutations in the Na-Cl Cotransporter Reduce Blood Pressure in Humans

Dinna N. Cruz; David B. Simon; Carol Nelson-Williams; Anita Farhi; Karin E. Finberg; Laura Burleson; John R. Gill; Richard P. Lifton

The relationship between salt homeostasis and blood pressure has remained difficult to establish from epidemiological studies of the general population. Recently, mendelian forms of hypertension have demonstrated that mutations that increase renal salt balance lead to higher blood pressure, suggesting that mutations that decrease the net salt balance might have the converse effect. Gitelman’s syndrome, caused by loss of function mutations in the Na-Cl cotransporter of the distal convoluted tubule (NCCT), features inherited hypokalemic alkalosis with so-called “normal” blood pressure. We hypothesized that the mild salt wasting of Gitelman’s syndrome results in reduced blood pressure and protection from hypertension. We have formally addressed this question through the study of 199 members of a large Amish kindred with Gitelman’s syndrome. Through genetic testing, family members were identified as inheriting 0 (n=60), 1 (n=113), or 2 (n=26) mutations in NCCT, permitting an unbiased assessment of the clinical consequences of inheriting these mutations by comparison of the phenotypes of relatives with contrasting genotypes. The results demonstrate high penetrance of hypokalemic alkalosis, hypomagnesemia, and hypocalciuria in patients inheriting 2 mutant NCCT alleles. In addition, the NCCT genotype was a significant predictor of blood pressure, with homozygous mutant family members having significantly lower age- and gender-adjusted systolic and diastolic blood pressures than those of their wild-type relatives. Moreover, both homozygote and heterozygote subjects had significantly higher 24-hour urinary Na+ than did wild-type subjects, reflecting a self-selected higher salt intake. Finally, heterozygous children, but not adults, had significantly lower blood pressures than those of the wild-type relatives. These findings provide formal demonstration that inherited mutations that impair renal salt handling lower blood pressure in humans.


Blood | 2010

Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis

Karin E. Finberg; Rebecca L. Whittlesey; Mark D. Fleming; Nancy C. Andrews

Iron-refractory, iron-deficiency anemia (IRIDA) is a familial disorder characterized by iron deficiency anemia unresponsive to oral iron treatment but partially responsive to intravenous iron therapy. Previously, we showed that IRIDA patients harbor loss-of-function mutations in TMPRSS6, a type II transmembrane serine protease primarily expressed by the liver. Both humans and mice with TMPRSS6 mutations show inappropriately elevated levels of the iron-regulatory hormone hepcidin, suggesting that TMPRSS6 acts to negatively regulate hepcidin expression. Here we investigate the relationship between Tmprss6 and the bone morphogenetic protein (BMP)-Smad signaling pathway, a key pathway promoting hepcidin transcription in hepatocytes. We show that livers from mice deficient for Tmprss6 have decreased iron stores and decreased Bmp6 mRNA, but markedly increased mRNA for Id1, a target gene of Bmp6 signaling. In contrast, mice deficient for both Tmprss6 and hemojuvelin (Hjv), a BMP coreceptor that augments hepcidin expression in hepatocytes, showed markedly decreased hepatic levels of hepcidin and Id1 mRNA, markedly increased hepatic Bmp6 mRNA levels, and systemic iron overload similar to mice deficient for Hjv alone. These findings suggest that down-regulation of Bmp/Smad signaling by Tmprss6 is required for regulation of hepcidin expression and maintenance of systemic iron homeostasis.


Journal of The American Society of Nephrology | 2003

Localization and Regulation of the ATP6V0A4 (a4) Vacuolar H+-ATPase Subunit Defective in an Inherited Form of Distal Renal Tubular Acidosis

Paul A. Stehberger; Nicole Schulz; Karin E. Finberg; Fiona E. Karet; Gerhard Giebisch; Richard P. Lifton; John P. Geibel; Carsten A. Wagner

Vacuolar-type H(+)-ATPases (V-H(+)-ATPases) are the major H(+)-secreting protein in the distal portion of the nephron and are involved in net H(+) secretion (bicarbonate generation) or H(+) reabsorption (net bicarbonate secretion). In addition, V-H(+)-ATPases are involved in HCO(3)(-) reabsorption in the proximal tubule and distal tubule. V-H(+)-ATPases consist of at least 13 subunits, the functions of which have not all been elucidated. Mutations in the accessory ATP6V0A4 (a4 isoform) subunit have recently been shown to cause an inherited form of distal renal tubular acidosis in humans. Here, the localization of this subunit in human and mouse kidney was studied and the regulation of expression and localization of this subunit in mouse kidney in response to acid-base and electrolyte intake was investigated. Reverse transcription-PCR on dissected mouse nephron segments amplified a4-specific transcripts in proximal tubule, loop of Henle, distal convoluted tubule, and cortical and medullary collecting duct. a4 protein was localized by immunohistochemistry to the apical compartment of the proximal tubule (S1/S2 segment), the loop of Henle, the intercalated cells of the distal convoluted tubule, the connecting segment, and all intercalated cells of the entire collecting duct in human and mouse kidney. All types of intercalated cells expressed a4. NH(4)Cl or NaHCO(3) loading for 24 h, 48 h, or 7 d as well as K(+) depletion for 7 and 14 d had no influence on a4 protein expression levels in either cortex or medulla as determined by Western blotting. Immunohistochemistry, however, demonstrated a subcellular redistribution of a4 in response to the different stimuli. NH(4)Cl and K(+) depletion led to a pronounced apical staining in the connecting segment, cortical collecting duct, and outer medullary collecting duct, whereas NaHCO(3) loading caused a stronger bipolar staining in the cortical collecting duct. Taken together, these results demonstrate a4 expression in the proximal tubule, loop of Henle, distal tubule, and collecting duct and suggest that under conditions in which increased V-H(+)-ATPase activity is required, a4 is regulated by trafficking but not protein expression. This may allow for the rapid adaptation of V-H(+)-ATPase activity to altered acid-base intake to achieve systemic pH homeostasis. The significance of a4 expression in the proximal tubule in the context of distal renal tubular acidosis will require further clarification.


Seminars in Hematology | 2009

Iron-Refractory Iron Deficiency Anemia

Karin E. Finberg

Iron-refractory iron deficiency anemia (IRIDA) is an autosomal recessive disorder characterized by iron deficiency anemia unresponsive to oral iron treatment but partially responsive to parenteral iron therapy. IRIDA has recently been shown to be caused by mutations in the gene TMPRSS6, which encodes a transmembrane serine protease (also known as matriptase-2) expressed by the liver. IRIDA patients show inappropriately elevated levels of hepcidin, a circulating hormone produced by the liver that inhibits both iron absorption from the intestine and iron release from macrophage stores. Recent studies suggest that TMPRSS6 normally acts to downregulate hepcidin expression by cleaving hemojuvelin, a membrane-bound protein that promotes hepcidin signaling in hepatocytes. A discussion of the clinical presentation of IRIDA, the molecular genetics of this disorder, and recent studies elucidating the underlying pathophysiology are presented.


Blood | 2011

Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice.

Karin E. Finberg; Rebecca L. Whittlesey; Nancy C. Andrews

The hereditary hemochromatosis protein HFE promotes the expression of hepcidin, a circulating hormone produced by the liver that inhibits dietary iron absorption and macrophage iron release. HFE mutations are associated with impaired hepatic bone morphogenetic protein (BMP)/SMAD signaling for hepcidin production. TMPRSS6, a transmembrane serine protease mutated in iron-refractory iron deficiency anemia, inhibits hepcidin expression by dampening BMP/SMAD signaling. In the present study, we used genetic approaches in mice to examine the relationship between Hfe and Tmprss6 in the regulation of systemic iron homeostasis. Heterozygous loss of Tmprss6 in Hfe(-/-) mice reduced systemic iron overload, whereas homozygous loss caused systemic iron deficiency and elevated hepatic expression of hepcidin and other Bmp/Smad target genes. In contrast, neither genetic loss of Hfe nor hepatic Hfe overexpression modulated the hepcidin elevation and systemic iron deficiency of Tmprss6(-/-) mice. These results indicate that genetic loss of Tmprss6 increases Bmp/Smad signaling in an Hfe-independent manner that can restore Bmp/Smad signaling in Hfe(-/-) mice. Furthermore, these results suggest that natural genetic variation in the human ortholog TMPRSS6 might modify the clinical penetrance of HFE-associated hereditary hemochromatosis, raising the possibility that pharmacologic inhibition of TMPRSS6 could attenuate iron loading in this disorder.


Current Opinion in Hematology | 2013

Regulation of systemic iron homeostasis.

Karin E. Finberg

Purpose of reviewThe circulating peptide hepcidin modulates systemic iron balance by limiting the absorption of dietary iron and the release of iron from macrophage stores. Recent studies conducted in humans, animal models, and tissue culture systems have enhanced our understanding of the molecular mechanisms by which hepcidin levels are altered in response to iron stores, inflammation, and erythropoietic activity. Recent findingsThe bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 play key, nonredundant roles in mediating hepcidin synthesis through the BMP signaling pathway. Actions of the hereditary hemochromatosis proteins HFE and transferrin receptor 2 may intersect with the BMP pathway. Hepcidin induction in response to inflammation requires cooperative BMP signaling. A variety of innate immune and infectious stimuli induce hepcidin expression. The hypoxia inducible factor pathway appears to suppress hepcidin indirectly through the capacity of erythropoietin to stimulate erythropoiesis. SummaryStudy of the molecular mechanisms underlying the regulation of hepcidin synthesis has revealed complex biology. Improved understanding of the signaling pathways involved in hepcidin regulation may contribute to improved therapeutic outcomes for patients with genetic and acquired disorders that impact systemic iron balance.


Hearing Research | 2003

Mice lacking the B1 subunit of H+-ATPase have normal hearing

Hongwei Dou; Karin E. Finberg; Emma Lou Cardell; Richard P. Lifton; Daniel Choo

Acid-base homeostasis of endolymph is thought to be essential for normal inner ear function. This assumption was supported by clinical data from individuals affected by autosomal recessive distal renal tubular acidosis with sensorineural hearing loss. This recessive syndrome was recently demonstrated to be due to mutations in the gene encoding the B1 subunit of H(+)-ATPase (ATP6B1). To examine the potential roles of H(+)-ATPase B1 subunit in inner ear development and function, we defined its spatial and temporal expression patterns in the developing mouse inner ear and examined the morphologic and physiologic effects of loss of its function. Standard in situ hybridization was used for the expression study with routine morphologic and physiologic assessments of hearing and balance in H(+)-ATPase B1 subunit (Atp6b1) null mutant mice. Atp6b1 mRNA was first detected at embryonic day 11.5 (E11.5) in the endolymphatic duct epithelia. From E16.5 onward, Atp6b1 was also observed in the presumptive interdental cell layer of the spiral limbus in the cochlea. Auditory brainstem response tests revealed normal hearing in mice lacking Atp6b1. The inner ears of these mice develop normally and show no overt morphological abnormalities. Our data demonstrate that Atp6b1 is not critical for normal inner ear development or normal inner ear function in mice and suggest that other proton-transporting mechanisms or pH buffering systems must allow the mouse inner ear to compensate for lack of normal Atp6b1 activity.

Collaboration


Dive into the Karin E. Finberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge