Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin E. Sandoval is active.

Publication


Featured researches published by Karin E. Sandoval.


Neurobiology of Disease | 2008

Blood-brain barrier tight junction permeability and ischemic stroke

Karin E. Sandoval; Ken A. Witt

The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels, providing a dynamic interface between the peripheral circulation and the central nervous system. The tight junctions (TJs) between the endothelial cells serve to restrict blood-borne substances from entering the brain. Under ischemic stroke conditions decreased BBB TJ integrity results in increased paracellular permeability, directly contributing to cerebral vasogenic edema, hemorrhagic transformation, and increased mortality. This loss of TJ integrity occurs in a phasic manner, which is contingent on several interdependent mechanisms (ionic dysregulation, inflammation, oxidative and nitrosative stress, enzymatic activity, and angiogenesis). Understanding the inter-relation of these mechanisms is critical for the development of new therapies. This review focuses on those aspects of ischemic stroke impacting BBB TJ integrity and the principle regulatory pathways, respective to the phases of paracellular permeability.


Microvascular Research | 2011

Age and 17β-estradiol effects on blood-brain barrier tight junction and estrogen receptor proteins in ovariectomized rats.

Karin E. Sandoval; Ken A. Witt

Age and estrogen levels alter blood-brain barrier (BBB) tight junction (TJ) regulation, impacting brain homeostasis and pathological outcomes. This examination evaluated BBB TJ and estrogen receptor (ER) protein expression changes in young (8-10 week) and middle-aged (10-12 month) ovariectomized female Fisher-344 rats with chronic 17β-estradiol or placebo treatment. Middle-aged rats showed decreased protein expression of occludin with 17β-estradiol (55 kDa band) or placebo (45, 55, 60 kDa bands) treatment compared to respective young. In young animals, 17β-estradiol treatment increased expression of the occludin 55 kDa band over placebo; however, this effect was lost in the middle-aged animals. In both young and middle-aged animals, expression of claudin-5 (23, 32 kDa bands) and ERα (66 kDa) increased with 17β-estradiol treatment, while junctional adhesion molecule-A showed no change across all groups. However, ERα expression (66 kDa) was significantly reduced in the middle-aged animals compared to young placebo treated animals. Measurement of BBB TJ permeability via in situ perfusion of (14)C-sucrose showed no change with age or treatment. Our results show that increasing age and 17β-estradiol treatment alters the expression of ERα and distinct BBB TJ protein isoforms without altering functional paracellular permeability.


Advances in pharmacology | 2014

Chapter Twelve - Steroids and the Blood–Brain Barrier: Therapeutic Implications

Ken A. Witt; Karin E. Sandoval

Steroids have a wide spectrum of impact, serving as fundamental regulators of nearly every physiological process within the human body. Therapeutic applications of steroids are equally broad, with a diverse range of medications and targets. Within the central nervous system (CNS), steroids influence development, memory, behavior, and disease outcomes. Moreover, steroids are well recognized as to their impact on the vascular endothelium. The blood-brain barrier (BBB) at the level of the brain microvascular endothelium serves as the principle interface between the peripheral circulation and the brain. Steroids have been identified to impact several critical properties of the BBB, including cellular efflux mechanisms, nutrient uptake, and tight junction integrity. Such actions not only influence brain homeostasis but also the delivery of CNS-targeted therapeutics. A greater understanding of the respective steroid-BBB interactions may shed further light on the differential treatment outcomes observed across CNS pathologies. In this chapter, we examine the current therapeutic implications of steroids respective to BBB structure and function, with emphasis on glucocorticoids and estrogens.


European Journal of Pharmacology | 2011

Chronic peripheral administration of somatostatin receptor subtype-4 agonist NNC 26-9100 enhances learning and memory in SAMP8 mice

Karin E. Sandoval; Susan A. Farr; William A. Banks; Michael L. Niehoff; John E. Morley; Albert M. Crider; Ken A. Witt

Selective somatostatin receptor subtype agonists have been proposed as a means to mitigate learning and memory loss associated with Alzheimers disease. The first aim of this study evaluated blood-to-brain transport and regional brain distribution of NNC 26-9100, a selective somatostatin subtype-4 (sst4) receptor agonist. The entry rate of (131)I-NNC 26-9100 was K(i)=0.25 μl/g min, with an ~93% association with the parenchymal component. The second goal of this study was to evaluate the effect of chronic NNC 26-9100 administration (i.p.) on learning and memory, brain Aβ(x-42) levels, and protein expression of sst4 receptor and amyloid precursor protein (APP) in the senescence-accelerated mouse p8 (SAMP8) model of Alzheimers disease. Mice chronically treated with NNC 26-9100 showed improved learning (day 21) and memory (day 28) using the T-maze paradigm (20 and 200 μg). Ex vivo tissue analyses showed a decline in Aβ(x-42) levels at the 20 μg dose, while no alterations were observed in sst4 receptor or APP protein expression compared to vehicle controls. These findings indicate NNC 26-9100 is taken up into key brain regions associated with learning and memory. Furthermore, chronic administration of NNC 26-9100 improved learning and memory and decreased Aβ(x-42) brain levels. These results suggest sst4 receptor agonists may provide a viable therapy in the treatment of Alzheimers disease and other forms of cognitive impairment.


Advances in pharmacology (San Diego) | 2014

Steroids and the Blood–Brain Barrier: Therapeutic Implications

Ken A. Witt; Karin E. Sandoval

Steroids have a wide spectrum of impact, serving as fundamental regulators of nearly every physiological process within the human body. Therapeutic applications of steroids are equally broad, with a diverse range of medications and targets. Within the central nervous system (CNS), steroids influence development, memory, behavior, and disease outcomes. Moreover, steroids are well recognized as to their impact on the vascular endothelium. The blood-brain barrier (BBB) at the level of the brain microvascular endothelium serves as the principle interface between the peripheral circulation and the brain. Steroids have been identified to impact several critical properties of the BBB, including cellular efflux mechanisms, nutrient uptake, and tight junction integrity. Such actions not only influence brain homeostasis but also the delivery of CNS-targeted therapeutics. A greater understanding of the respective steroid-BBB interactions may shed further light on the differential treatment outcomes observed across CNS pathologies. In this chapter, we examine the current therapeutic implications of steroids respective to BBB structure and function, with emphasis on glucocorticoids and estrogens.


European Journal of Pharmacology | 2012

Somatostatin receptor subtype-4 agonist NNC 26–9100 decreases extracellular and intracellular Aβ1–42 trimers

Karin E. Sandoval; Susan A. Farr; William A. Banks; Albert M. Crider; John E. Morley; Ken A. Witt

Soluble amyloid β-protein (Aβ) oligomers are primary mediators of synaptic dysfunction associated with the progression of Alzheimers disease. Such Aβ oligomers exist dependent on their rates of aggregation and metabolism. Use of selective somatostatin receptor-subtype agonists have been identified as a potential means to mitigate Aβ accumulation in the brain, via regulation of the enzyme neprilysin. Herein, we first evaluated the impact of the somatostatin receptor subtype-4 agonist 1-[3-[N-(5-Bromopyridin-2-yl)-N-(3,4-dichlorobenzyl)amino]propyl]-3-[3-(1H-imidazol-4-yl)propyl]thiourea (NNC 26-9100) on learning and memory in 12-month SAMP8 mice (i.c.v. injection). NNC 26-9100 (0.2 μg-dose) was shown to enhance both learning (T-maze) and memory (object recognition) compared to vehicle controls. Cortical and hippocampal tissues were evaluated subsequent to NNC 26-9100 (0.2 μg) or vehicle administration for changes in neprilysin activity, along with protein expression of amyloid-precursor protein (APP), neprilysin, and Aβ₁₋₄₂ oligomers within respective cellular fractions (extracellular, intracellular and membrane). NNC 26-9100 increased neprilysin activity in cortical tissue, with an associated protein expression increase in the extracellular fraction and decreased in the intracellular fraction. A decrease in intracellular APP expression was found with treatment in both cortical and hippocampal tissues. NNC 26-9100 also significantly decreased expression of Aβ₁₋₄₂ trimers within both the extracellular and intracellular cortical fractions. No expression changes were found in membrane fractions for any protein. These finding suggest the potential use of selective SSTR4 agonists to mitigate toxic oligomeric forms of Aβ₁₋₄₂ in critical regions of the brain identified with learning and memory decline.


Journal of Alzheimer's Disease | 2016

Peripheral Administration of GSK-3β Antisense Oligonucleotide Improves Learning and Memory in SAMP8 and Tg2576 Mouse Models of Alzheimer’s Disease

Susan A. Farr; Karin E. Sandoval; Michael L. Niehoff; Ken A. Witt; Vijaya B. Kumar; John E. Morley

Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimers disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. We have previously shown that an antisense oligonucleotide directed at the Tyr 216 site on GSK-3β (GAO) when injected centrally can decrease GSK-3β levels, improve learning and memory, and decrease oxidative stress. In addition, we showed that GAO can cross the blood-brain barrier. Herein the impact of peripherally administered GAO in both the non-transgenic SAMP8 and transgenic Tg2576 (APPswe) models of AD were examined respective to learning and memory. Brain tissues were then evaluated for expression changes in the phosphorylated-Tyr 216 residue, which leads to GSK-3β activation, and the phosphorylated-Ser9 residue, which reduces GSK-3β activity. SAMP8 GAO-treated mice showed improved acquisition and retention using aversive T-maze, and improved declarative memory as measured by the novel object recognition (NOR) test. Expression of the phosphorylated-Tyr 216 was decreased and the phosphorylated-Ser9 was increased in GAO-treated SAMP8 mice. Tg2576 GAO-treated mice improved acquisition and retention in both the T-maze and NOR tests, with an increased phosphorylated-Ser9 GSK-3β expression. Results demonstrate that peripheral administration of GAO improves learning and memory, corresponding with alterations in GSK-3β phosphorylation state. This study supports peripherally administered GAO as a viable means to mediate GSK-3β activity within the brain and a possible treatment for AD.


Brain Research | 2013

Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Aβ42 oligomers via a metalloproteinase-dependent mechanism

Karin E. Sandoval; Susan A. Farr; William A. Banks; Albert M. Crider; John E. Morley; Ken A. Witt

Soluble amyloid-β peptide (Aβ) oligomers have been hypothesized to be primary mediators of Alzheimers disease progression. In this regard, reduction of soluble Aβ-oligomers levels within the brain may provide a viable means in which to treat the disease. Somatostatin receptor subtype-4 (SSTR4) agonists have been proposed to reduce Aβ levels in the brain via enhancement of enzymatic degradation. Herein we evaluated the effect of selective SSTR4 agonist NNC 26-9100 on the changes in learning and soluble Aβ42 oligomer brain content with and without co-administration of the M13-metalloproteinase family enzyme-inhibitor phosphoramidon, using the senescence-accelerated mouse prone-8 (SAMP8) model. NNC 26-9100 treatment (0.2 µg i.c.v. in 2 µL) improved learning, which was blocked by phosphoramidon (1 and 10mM, respectively). NNC 26-9100 decreased total soluble Aβ42, an effect which was blocked by phosphoramidon (10mM). Extracellular, intracellular, and membrane fractions were then isolated from cortical tissue and assessed for soluble oligomer alterations. NNC 26-9100 decreased the Aβ42 trimeric (12 kDa) form within the extracellular and intracellular fractions, and produced a band-split effect of the Aβ42 hexameric (25 kDa) form within the extracellular fraction. These effects were also blocked by phosphoramdon (1 and 10mM, respectively). Subsequent evaluation of NNC 26-9100 in APPswe Tg2576 transgenic mice showed a similar learning improvement and corresponding reduction in soluble Aβ42 oligomers within extracellular, intracellular, and membrane fractions. These data support the hypothesis that NNC 26-9100 reduces soluble Aβ42 oligomers and enhances learning through a phosphoramidon-sensitive metalloproteinase-dependent mechanism.


Current Developments in Nutrition | 2018

Mfsd2a and Glut1 Brain Nutrient Transporters Expression Increase with 32-Week Low and High Lard Compared with Fish-Oil Dietary Treatment in C57Bl/6 Mice

Karin E. Sandoval; Joshua S. Wooten; Mathew P Harris; Megan L Schaller; David S. Umbaugh; Ken A. Witt

Abstract Background Diet-mediated alterations of critical brain nutrient transporters, major facilitator super family domain-containing 2a (Mfsd2a) and glucose transporter 1 (Glut1), have wide reaching implications in brain health and disease. Objective The aim of the study was to examine the impact of long-term low- and high-fat diets with lard or fish oil on critical brain nutrient transporters, Mfsd2a and Glut1. Methods Eight-week-old male C57BL/6 mice were fed 1 of the following 4 diets for 32 wk: 10% of kcal from lard, 10% of kcal from fish oil, 41% of kcal from lard, or 41% of kcal from fish oil. Body weight and blood chemistries delineated dietary effects. Cortical and subcortical Mfsd2a and Glut1 mRNA and protein expression were evaluated, with other supportive nutrient-sensitive targets also assessed for mRNA expression changes. Results Fish-oil diets increased cortical Mfsd2a mRNA expression compared with lard diets. Subcortical Mfsd2a mRNA expression decreased as the percentage of fat in the diet increased. There was an interaction between the type and percentage of fat with cortical and subcortical Mfsd2a and cortical Glut1 protein expression. In the lard diet groups, protein expression of cortical and subcortical Mfsd2a and cortical Glut1 significantly increased as fat percentage increased. As the fat percentage increased in the fish-oil diet groups, protein expression of cortical and subcortical Mfsd2a and cortical Glut1 did not change. When comparing the fish-oil groups with 10% lard, cortical Mfsd2a protein expression was significantly higher in the 10% and 41% fish-oil groups, whereas cortical Glut1 protein expression was significantly higher in only the 10% fish-oil group. A positive correlation between cortical peroxisome proliferator–activated receptor γ mRNA expression and Mfsd2a protein expression was shown. Conclusion Corresponding to chronic dietary treatment, an interaction between the type of fat and the percentage of fat exists respective to changes in brain expression of the key nutrient transporters Mfsd2a and Glut1.


Archive | 2014

Steroids and the Blood–Brain Barrier

Ken A. Witt; Karin E. Sandoval

Steroids have a wide spectrum of impact, serving as fundamental regulators of nearly every physiological process within the human body. Therapeutic applications of steroids are equally broad, with a diverse range of medications and targets. Within the central nervous system (CNS), steroids influence development, memory, behavior, and disease outcomes. Moreover, steroids are well recognized as to their impact on the vascular endothelium. The blood-brain barrier (BBB) at the level of the brain microvascular endothelium serves as the principle interface between the peripheral circulation and the brain. Steroids have been identified to impact several critical properties of the BBB, including cellular efflux mechanisms, nutrient uptake, and tight junction integrity. Such actions not only influence brain homeostasis but also the delivery of CNS-targeted therapeutics. A greater understanding of the respective steroid-BBB interactions may shed further light on the differential treatment outcomes observed across CNS pathologies. In this chapter, we examine the current therapeutic implications of steroids respective to BBB structure and function, with emphasis on glucocorticoids and estrogens.

Collaboration


Dive into the Karin E. Sandoval's collaboration.

Top Co-Authors

Avatar

Ken A. Witt

Southern Illinois University Edwardsville

View shared research outputs
Top Co-Authors

Avatar

Joshua S. Wooten

Southern Illinois University Edwardsville

View shared research outputs
Top Co-Authors

Avatar

Megan L Schaller

Southern Illinois University Edwardsville

View shared research outputs
Top Co-Authors

Avatar

Kenneth A Witt

Southern Illinois University Edwardsville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert M. Crider

Southern Illinois University Edwardsville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Michael Crider

Southern Illinois University Edwardsville

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge