Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Fromell is active.

Publication


Featured researches published by Karin Fromell.


Biomaterials | 2015

Prediction of inflammatory responses induced by biomaterials in contact with human blood using protein fingerprint from plasma.

Anna E. Engberg; Per H. Nilsson; Shan Huang; Karin Fromell; Osama A. Hamad; Tom Eirik Mollnes; Jenny Rosengren-Holmberg; Kerstin Sandholm; Yuji Teramura; Ian A. Nicholls; Bo Nilsson; Kristina Nilsson Ekdahl

Inappropriate complement activation is often responsible for incompatibility reactions that occur when biomaterials are used. Complement activation is therefore a criterion included in legislation regarding biomaterials testing. However, no consensus is yet available regarding appropriate complement-activation-related test parameters. We examined protein adsorption in plasma and complement activation/cytokine release in whole blood incubated with well-characterized polymers. Strong correlations were found between the ratio of C4 to its inhibitor C4BP and generation of 10 (mainly pro-inflammatory) cytokines, including IL-17, IFN-γ, and IL-6. The levels of complement activation products correlated weakly (C3a) or not at all (C5a, sC5b-9), confirming their poor predictive values. We have demonstrated a direct correlation between downstream biological effects and the proteins initially adhering to an artificial surface after contact with blood. Consequently, we propose the C4/C4BP ratio as a robust, predictor of biocompatibility with superior specificity and sensitivity over the current gold standard.


Immunological Reviews | 2016

Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation

Kristina Nilsson Ekdahl; Yuji Teramura; Osama A. Hamad; Sana Asif; Claudia Duehrkop; Karin Fromell; Elisabet Gustafson; Jaan Hong; Huda Kozarcanin; Peetra U. Magnusson; Markus Huber-Lang; Peter Garred; Bo Nilsson

Innate immunity is fundamental to our defense against microorganisms. Physiologically, the intravascular innate immune system acts as a purging system that identifies and removes foreign substances leading to thromboinflammatory responses, tissue remodeling, and repair. It is also a key contributor to the adverse effects observed in many diseases and therapies involving biomaterials and therapeutic cells/organs. The intravascular innate immune system consists of the cascade systems of the blood (the complement, contact, coagulation, and fibrinolytic systems), the blood cells (polymorphonuclear cells, monocytes, platelets), and the endothelial cell lining of the vessels. Activation of the intravascular innate immune system in vivo leads to thromboinflammation that can be activated by several of the systems pathways and that initiates repair after tissue damage and leads to adverse reactions in several disorders and treatment modalities. In this review, we summarize the current knowledge in the field and discuss the obstacles that exist in order to study the cross‐talk between the components of the intravascular innate immune system. These include the use of purified in vitro systems, animal models and various types of anticoagulants. In order to avoid some of these obstacles we have developed specialized human whole blood models that allow investigation of the cross‐talk between the various cascade systems and the blood cells. We in particular stress that platelets are involved in these interactions and that the lectin pathway of the complement system is an emerging part of innate immunity that interacts with the contact/coagulation system. Understanding the resulting thromboinflammation will allow development of new therapeutic modalities.


Journal of Immunoassay & Immunochemistry | 2007

Comparison between Chicken and Rabbit Antibody Based Particle Enhanced Cystatin C Reagents for Immunoturbidimetry

Lars-Olof Hansson; Mats Flodin; Tom Nilsen; Karin D. Caldwell; Karin Fromell; Kathrin Sunde; Anders Larsson

Abstract We have compared three commercial particle enhanced cystatin C reagents. One of the reagents utilizes chicken antibodies and the other two reagents are rabbit antibody based. We show that the chicken antibody based reagent yields a higher delta absorbance when reacting with the antigen. IgY coupled to latex particles show a strong scatter response even at high antigen concentrations in contrast to the steep decline in scatter previously reported for IgY antibodies in solution. The reagent also showed a low CV for duplicate samples. Laying hens thus seems as an interesting source of antibodies for particle‐enhanced immunoassays.


Thrombosis and Haemostasis | 2015

Contact activation of C3 enables tethering between activated platelets and polymorphonuclear leukocytes via CD11b/CD18

Osama A. Hamad; Ioannis Mitroulis; Karin Fromell; Huda Kozarcanin; Triantafyllos Chavakis; Daniel Ricklin; John D. Lambris; Kristina Nilsson Ekdahl; Bo Nilsson

Complement component C3 has a potential role in thrombotic pathologies. It is transformed, without proteolytic cleavage, into C3(H2O) upon binding to the surface of activated platelets. We hypothesise that C3(H2O) bound to activated platelets and to platelet-derived microparticles (PMPs) contributes to platelet-PMN complex (PPC) formation and to the binding of PMPs to PMNs. PAR-1 activation of platelets in human whole blood from normal individuals induced the formation of CD16+/CD42a+ PPC. The complement inhibitor compstatin and a C5a receptor antagonist inhibited PPC formation by 50 %, while monoclonal antibodies to C3(H2O) or anti-CD11b inhibited PPC formation by 75-100 %. Using plasma protein-depleted blood and blood from a C3-deficient patient, we corroborated the dependence on C3, obtaining similar results after reconstitution with purified C3. By analogy with platelets, PMPs isolated from human serum were found to expose C3(H2O) and bind to PMNs. This interaction was also blocked by the anti-C3(H2O) and anti-CD11b monoclonal antibodies, indicating that C3(H2O) and CD11b are involved in tethering PMPs to PMNs. We confirmed the direct interaction between C3(H2O) and CD11b by quartz crystal microbalance analysis using purified native C3 and recombinant CD11b/CD18 and by flow cytometry using PMP and recombinant CD11b. Transfectants expressing CD11b/CD18 were also shown to specifically adhere to surface-bound C3(H2O). We have identified contact-activated C3(H2O) as a novel ligand for CD11b/CD18 that mediates PPC formation and the binding of PMPs to PMNs. Given the various roles of C3 in thrombotic reactions, this finding is likely to have important pathophysiological implications.


Angewandte Chemie | 2011

Powerful protein binders from designed polypeptides and small organic molecules: a general concept for protein recognition

Lotta Tegler; Guillaume Nonglaton; Frank Büttner; Karin D. Caldwell; Tony Christopeit; U. Helena Danielson; Karin Fromell; Thomas Gossas; Anders Larsson; Paola Longati; Thomas Norberg; Ramesh Ramapanicker; Johan Rydberg; Lars Baltzer

In this thesis, the interactions between different proteins and small ligands were characterized by surface plasmon resonance spectroscopy (SPR) and fluorescence resonance energy transfer (FRET) based assays. For the C-reactive protein (CRP), a new type of artificial binder was identified which allows designing diagnostic assays superior to commonly used standard assays. Furthermore, an interaction study with the endogenous ligand phosphocholine revealed the importance of the avidity of pentameric CRP for the distinction of different types of lipid membranes. The interaction study with calcium showed how SPR based assays can be used to study ion-protein interactions despite the low atomic weight of ions. The transmembrane protease BACE1, an important drug target for Alzheimer’s disease, was immobilized to an SPR biosensor surface and embedded into a lipid membrane. An interaction study with a set of known BACE1 inhibitors showed that the transmembrane region has only minor effects on the interactions. Furthermore the pH-dependencies of the interactions were investigated and revealed new important conclusions for inhibitor design. Computer aided modelling showed that the protonation state of the aspartic dyad is dependent on the interacting inhibitor which offers new perspectives for in silico screenings.The SPR assay developed for BACE1 was adapted to a more complex membrane protein, the pentameric β3 GABAA receptor. The assay allowed the pharmacological characterisation for histaminergic and GABAergic ligands and gave further evidence for cross-talk between the two signal transduction pathways. This study shows that the immobilisation method used for BACE1 and the s3 GABAA receptor has the potential to become a standard method for handling membrane proteins. The identification of new drug leads from natural sources is a common strategy for drug discovery. A combination of SPR and FRET based activity assays were explored to increase the efficiency of this process. For HIV-1 protease, secreted aspartic protease (SAP) 1, 2 and 3 extracts from a marine vertebrate were identified containing potent inhibitors which interacted with the active site of the enzymes.The studies in this thesis show that the investigation of protein interactions is crucial for understanding protein functions and can help to develop novel drugs for the treatment of different diseases.


Thrombosis and Haemostasis | 2015

Vascular repair utilising immobilised heparin conjugate for protection against early activation of inflammation and coagulation

Sofia Nordling; Jaan Hong; Karin Fromell; Fredrik Edin; Johan Brännström; Rolf Larsson; Bo Nilsson; Peetra U. Magnusson

Ischaemia-reperfusion injury (IRI) poses a major challenge in many thrombotic conditions and in whole organ transplantation. Activation of the endothelial cells and shedding of the protective vascular glycocalyx during IRI increase the risk of innate immune activation, cell infiltration and severe thrombus formation, promoting damage to the tissue. Here, we present a novel one-step strategy to protect the vasculature by immobilisation of a unique multi-arm heparin conjugate to the endothelium. Applying a new in vitro blood endothelial cell chamber model, the heparin conjugate was found to bind not only to primary human endothelial cells but also directly to the collagen to which the cells adhered. Incubation of hypoxic endothelial cells with freshly drawn human blood in the blood chambers elicited coagulation activation reflected by thrombin anti-thrombin formation and binding of platelets and neutrophils. Immobilisation of the heparin conjugate to the hypoxic endothelial cells created a protective coating, leading to a significant reduction of the recruitment of blood cells and coagulation activation compared to untreated hypoxic endothelial cells. This novel approach of immobilising multi-arm heparin conjugates on the endothelial cells and collagen of the basement membrane ensures to protect the endothelium against IRI in thrombotic disorders and in transplantation.


ChemBioChem | 2011

Polypeptide conjugate binders that discriminate between two isoforms of human carbonic anhydrase in human blood.

Lotta Tegler; Karin Fromell; Bengt-Harald Jonsson; Johan Viljanen; Cecilia Winander; Jonas Carlsson; Lars Baltzer

Two binder candidates 4‐C37L34‐B and 3‐C15L8‐B from a 16‐membered set of 42‐residue polypeptide conjugates designed to bind human carbonic anhydrase II (HCAII), were shown to bind HCAII with high affinity in a fluorescence‐based screening assay. Two carbonic anhydrase isoforms with 60 % homology exist in human blood with HCAI being present in five‐ to sevenfold excess over HCAII. The ability of the binders to discriminate between HCAI and HCAII was evaluated with regard to what selectivity could be achieved by the conjugation of polypeptides from a 16‐membered set to a small organic molecule that binds both isoforms with similar affinities. The polypeptide conjugate 4‐C37L34‐B bound HCAII with a KD of 17 nM and HCAI with a KD of 470 nM, that is, with a 30‐fold difference in affinity. The corresponding dissociation constants for the complexes formed from 3‐C15L8‐B and the two carbonic anhydrases were 60 and 390 nM, respectively. This demonstration of selectivity between two very similar proteins is striking in view of the fact that the molecular weight of each one of the conjugate molecules is little more than 5000, the fold is unordered, and the polypeptide sequences were designed de novo and have no prior relationship to carbonic anhydrases. The results suggest that synthetic polypeptide conjugates can be prepared from organic molecules that are considered to be weak binders with low selectivity, yielding conjugates with properties that make them attractive alternatives to biologically generated binders in biotechnology and biomedicine.


Acta Biomaterialia | 2016

Heparinization of cell surfaces with short peptide-conjugated PEG-lipid regulates thromboinflammation in transplantation of human MSCs and hepatocytes

Sana Asif; Kristina Nilsson Ekdahl; Karin Fromell; Elisabet Gustafson; Andreea Barbu; Katarina Le Blanc; Bo Nilsson; Yuji Teramura

UNLABELLED Infusion of therapeutic cells into humans is associated with immune responses, including thromboinflammation, which result in a large loss of transplanted cells. To address these problems, heparinization of the cell surfaces was achieved by a cell-surface modification technique using polyethylene glycol-conjugated phospholipid (PEG-lipid) derivatives. A short heparin-binding peptide was conjugated to the PEG-lipid for immobilization of heparin conjugates on the surface of human mesenchymal stem cells (hMSCs) and human hepatocytes. Here three kinds of heparin-binding peptides were used for immobilizing heparin conjugates and examined for the antithrombogenic effects on the cell surface. The heparinized cells were incubated in human whole blood to evaluate their hemocompatibility by measuring blood parameters such as platelet count, coagulation markers, complement markers, and Factor Xa activity. We found that one of the heparin-binding peptides did not show cytotoxicity after the immobilization with heparin conjugates. The degree of binding of the heparin conjugates on the cell surface (analyzed by flow cytometer) depended on the ratio of the active peptide to control peptide. For both human MSCs and hepatocytes in whole-blood experiments, no platelet aggregation was seen in the heparin conjugate-immobilized cell group vs. the controls (non-coated cells or control peptide). Also, the levels of thrombin-antithrombin complex (TAT), C3a, and sC5b-9 were significantly lower than those of the controls, indicating a lower activation of coagulation and complement. Factor Xa analysis indicated that the heparin conjugate was still active on the cell surface at 24h post-coating. It is possible to immobilize heparin conjugates onto hMSC and human hepatocyte surfaces and thereby protect the cell surfaces from damaging thromboinflammation. STATEMENT OF SIGNIGFICANCE We present a promising approach to enhance the biocompatibility of therapeutic cells. Here we used short peptide-conjugated PEG-lipid for cell surface modification and heparin conjugates for the coating of human hepatocytes and MSCs. We screened the short peptides to find higher affinity for heparinization of cell surface and performed hemocompatibility assay of heparinized human hepatocytes and human MSCs in human whole blood. Using heparin-binding peptide with higher affinity, not only coagulation activation but also complement activation was significantly suppressed. Thus, it was possible to protect human hepatocytes and human MSCs from the attack of thromboinflammatory activation, which can contribute to the improvement graft survival.


Colloids and Surfaces B: Biointerfaces | 2016

Development and characterization of an innovative heparin coating to stabilize and protect liposomes against adverse immune reactions.

Claudia Duehrkop; Gero Leneweit; Christoph Heyder; Karin Fromell; Katarina Edwards; Kristina Nilsson Ekdahl; Bo Nilsson

Liposomes have been recognized as excellent drug delivery systems, but when they come in direct contact with different blood components they may trigger an immediate activation of the innate immune system. The aim of the present study was to produce long-circulating, blood-compatible liposomes by developing a construct of liposomes covered by a novel unique heparin complex (CHC; 70 heparin molecules per complex) to avoid recognition by the innate immune system. Unilamellar, cationic liposomes were produced by hand extrusion through a 100-nm polycarbonate membrane. Coating of liposomes with the macromolecular CHC was accomplished by electrostatic interactions. Dynamic light scattering as well as QCM-D measurements were used to verify the electrostatic deposition of the negatively charged CHC to cationic liposomes. The CHC-coated liposomes did not aggregate when in contact with lepirudin anti-coagulated plasma. Unlike previous attempts to coat liposomes with heparin, this technique produced freely moveable heparin strands sticking out from the liposome surface, which exposed AT binding sites reflecting the anticoagulant potentials of the liposomes. In experiments using lepirudin-anticoagulated plasma, CHC-coated liposomes, in contrast to non-coated control liposomes, did not activate the complement system, as evidenced by low C3a and sC5b-9 generation and reduced leakage from the liposomes. In conclusion, we show that liposomes can be successfully coated with the biopolymer CHC, resulting in biocompatible and stable liposomes that have significant application potential.


Analytical and Bioanalytical Chemistry | 2012

Designed protein binders in combination with nanocrystalline diamond for use in high-sensitivity biosensors

Karin Fromell; Pontus Forsberg; Mikael Karlsson; Karin Larsson; Fredrik Nikolajeff; Lars Baltzer

A platform for diagnostic applications showing signal-to-noise ratios that by far surpass those of traditional bioanalytical test formats has been developed. It combines the properties of modified nanocrystalline diamond (NCD) surfaces and those of polyethylene oxide and polypropylene oxide based block copolymers for surface passivation and binder conjugation with a new class of synthetic binders for proteins. The NCD surfaces were fluorine-, hydrogen-, or oxygen-terminated prior to further biofunctionalization and the surface composition was characterized by X-ray photoelectron spectroscopy. In a proof of principle demonstration targeting the C-reactive protein, an ELISA carried out using an F-terminated diamond surface showed a signal-to-noise ratio of 3,900 which compares well to the signal-to-noise of 89 obtained in an antibody-based ELISA on a polystyrene microtiter plate, a standard test format used in most life science laboratories today. The increase in signal-to-noise ratio is to a large extent the result of extremely efficient passivation of the diamond surface. The results suggest that significant improvements can be obtained in standardized test formats using new materials in combination with new types of chemical coatings and receptor molecules.

Collaboration


Dive into the Karin Fromell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Baltzer

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Larsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gulaim A. Seisenbaeva

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge