Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Hofstetter is active.

Publication


Featured researches published by Karin Hofstetter.


Holzforschung | 2007

Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach

Karin Hofstetter; Christian Hellmich; Josef Eberhardsteiner

Abstract Wood exhibits a highly diverse microstructure. It appears as a solid-type composite material at a length scale of some micrometers, while it resembles an assembly of plate-like elements arranged in a honeycomb fashion at the length scale of some hundreds of micrometers. These structural features result in different load-carrying mechanisms at different observation scales and under different loading conditions. In this paper, we elucidate the main load-carrying mechanisms by means of a micromechanical model for softwood materials. Representing remarkable progress with respect to earlier models reported in the literature, this model is valid across various species. The model is based on tissue-independent stiffness properties of cellulose, lignin, hemicellulose, and water obtained from direct testing and lattice-dynamics analyses. Sample-specific characteristics are considered in terms of porosity and the contents of cellulose, lignin, hemicelluloses and water, which are obtained from mass density measurements, environmental scanning micrographs, analytical chemistry, and NMR spectroscopy. The model comprises three homogenization steps, two based on continuum micromechanics and one on the unit cell method. The latter represents plate-like bending and shear of the cell walls due to transverse shear loading and axial straining in the tangential stem direction. Accurate representation of these deformation modes results in accurate (orthotropic) stiffness estimates across a variety of softwood species. These stiffness predictions deviate, on average, by less than 10% from corresponding experimental results obtained from ultrasonic or quasi-static testing. Thus, the proposed model can reliably predict microscopic and macroscopic mechanical properties from internal structure and composition, and is therefore expected to significantly support wood production technology (such as drying techniques) and mechanical analyses of timber structures.


Holzforschung | 2009

Hierarchical modelling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004-2008 : Wood machining - micromechanics and fracture

Karin Hofstetter; E. Kristofer Gamstedt

Abstract Wood exhibits a hierarchical architecture. Its macroscopic properties are determined by microstructural features at different scales of observation. Recent developments of experimental micro-characterisation techniques have delivered further insight into the appearance and the behaviour of wood at smaller length scales. The improved knowledge and the availability of increasingly powerful micromechanical modelling techniques and homogenisation methods have stimulated rather comprehensive research on multiscale modelling of wood. Linking microstructural properties to macroscopic characteristics is expected to improve the knowledge of the mechanical behaviour of wood and to serve as the basis for the development of innovative wood-based products and for biomimetic material design. Moreover, understanding fundamental aspects of wood machining requires multiscale approaches which can take into account the heterogeneity, anisotropy and hierarchies of wood and wood composites. In this review, recent developments in the field of hierarchical modelling of the hygroelastic behaviour of wood are discussed, and a short outline of the theoretical background is given. Much focus is placed on composite micromechanical models for the wood cell wall and on multiscale models for wood resting upon hierarchical finite element models and on the application of continuum micromechanics, respectively. These models generally lead to the specification of equivalent homogeneous continua with effective material properties. Finally, current deficiencies and limitations of hierarchical models are sketched and possible future research directions are specified.


Holzforschung | 2010

Macro- and micro-mechanical properties of red oak wood (Quercus rubra L.) treated with hemicellulases

Johannes Konnerth; Martina Eiser; Andreas Jäger; Thomas K. Bader; Karin Hofstetter; Jürgen Follrich; Thomas Ters; Christian Hansmann; Rupert Wimmer

Abstract Red oak wood (Quercus rubra L.) samples were submitted to an enzymatic treatment with a commercial mixture of hemicellulases aiming at the selective depolymerization and removal of the hemicelluloses. Mechanical properties of treated samples were characterized and compared with untreated samples at two hierarchical levels. At the macrolevel, tensile properties revealed to be less sensitive to degradation of the cell wall matrix compared to compression and hardness properties. Results obtained through indentation at the microlevel indicated that hardness and the so-called reduced modulus of treated wood were significantly lowered. Accordingly, hardness and reduced elastic modulus have proven to be most sensitive to modification of the cell wall matrix by reducing the content of hemicelluloses. It is proposed that transversal and shear stresses, which are mainly carried by the cell wall matrix, are additional parameters having strong effects on elastic modulus obtained by nanoindentation. Micromechanical modeling was employed to confirm the observed changes. There is consistency between the measured and the modeled properties, obtained at both the microlevel and the macrolevel of wood.


Mechanics of Advanced Materials and Structures | 2008

Micromechanical Estimates for Elastic Limit States in Wood Materials, Revealing Nanostructural Failure Mechanisms

Karin Hofstetter; Ch. Hellmich; Josef Eberhardsteiner; Herbert A. Mang

At the macroscale, wood materials show great variability and diversity. At the nanoscale, however, they exhibit common (universal) building blocks which build up universal organizational patterns over several length scales up to the macroscale. In the framework of continuum micromechanics, this building principle was recently expressed in quantitative terms, allowing for a prognosis of tissue-specific anisotropic elasticity properties of wood from tissue-specific chemical composition and porosity, and from universal elastic properties of the elementary constituents “amorphous cellulose,” “crystalline cellulose,” “hemicellulose,” “lignin,” and “water.” In this paper, we extend this investigation to tissue-specific macroscopic elastic limit states: We show that shear failure of the nanoscale building block “lignin,” which exhibits an isotropic, tissue-independent (“universal”) shear strength, is the dominant determinant of anisotropic macroscopic failure of wood under different loading conditions. In a continuum micromechanics setting, quadratic strain averages over material phases represent microstructural strain peaks, which are responsible for material phase failure. The good agreement of tissue-specific micromechanical predictions of macroscopic limit stresses with corresponding tissue-specific strength experiments underlines the role of lignin as the governing strength-determining component of wood.


Wood Science and Technology | 2010

Knots in trees: strain distribution in a naturally optimised structure.

Christoph Hackspiel; Karin Hofstetter; Ua Müller; Wolfgang Gindl; Alfred Teischinger; Johannes Konnerth

Electronic speckle pattern interferometry was applied to directly measure the distribution of longitudinal, tangential, and shear strains in small boards of Norway spruce (Picea abies (L.) Karst.) exposed to tensile load in longitudinal direction. A sample with a central intergrown knot and one with an equivalent loose knot were compared with reference samples made of clear wood with an artificial central circular or square hole, respectively. The observed measurements were compared with a finite element (FE) simulation. The FE model was based on a geometric model to quantify the local fibre orientation and a micromechanical model to estimate elastic constants of clear wood and knot tissue. Both the measurements and simulation clearly illustrate a rather homogenous strain distribution around the intergrown knot. In comparison, the natural optimisation of dispersing strain peaks is less efficient in the case of loose knots. The artificial circular and square holes in samples with parallel fibre orientation lead to high gradients in the strain field and peak values in vicinity of the disturbance.


Holzforschung | 2011

Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description

Johannes Eitelberger; Staffan Svensson; Karin Hofstetter

Abstract The macroscopic formulation of moisture transport in wood below the fiber saturation point has motivated many research efforts in the past two decades. Many experiments demonstrated the difference in steady state and transient moisture transport and the inadequacy of models derived for steady state transport when used to describe transient processes. A suitable modeling approach was found by distinguishing between the two phases of water in wood, namely bound water in the cell walls and water vapor in the lumens. Such models are capable of reproducing transient moisture transport processes, but the physical origin of the coupling between the two phases remains unclear. In this paper, the physical background on the microscale is clarified and transformed into a comprehensive macroscopic description, ending up with a dual-scale model comprising three coupled differential equations for bound water, water vapor, and internal energy, as well as a simplified microscale model for determination of the coupling term.


Wood Science and Technology | 2010

Development of high-performance strand boards: multiscale modeling of anisotropic elasticity

Reinhard Stürzenbecher; Karin Hofstetter; Gerhard Schickhofer; Josef Eberhardsteiner

The interrelationships between microstructural characteristics and anisotropic elastic properties of strand-based engineered wood products are highly relevant in order to produce custom-designed strand products with tailored properties. A model providing a link between these characteristics and the resulting elastic behavior of the strand products is a very valuable tool to study these relationships. Here, the development, the experimental validation, and several applications of a multiscale model for strand products are presented. In a first homogenization step, the elastic properties of homogeneous strand boards are estimated by means of continuum micromechanics from strand shape, strand orientation, elastic properties of the used raw material, and mean board density. In a second homogenization step, the effective stiffness of multi-layer strand boards is determined by means of lamination theory, where the vertical density profile and different layer assemblies are taken into account. On the whole, this model enables to predict the macroscopic mechanical performance of strand-based panels from microscopic mechanical and morphological characteristics and, thus, constitutes a valuable tool for product development and optimization.


Holzforschung | 2012

Microstructure and stiffness of Scots pine (Pinus sylvestris L) sapwood degraded by Gloeophyllum trabeum and Trametes versicolor – Part I: Changes in chemical composition, density and equilibrium moisture content

Thomas K. Bader; Karin Hofstetter; Gry Alfredsen; Susanne Bollmus

Abstract Fungal degradation alters the microstructure of wood and its physical and chemical properties are also changed. While these changes are well investigated as a function of mass loss, mass density loss and changes in equilibrium moisture content are not well elucidated. The physical and chemical alterations are crucial when linking microstructural characteristics with macroscopic mechanical properties. In the present article, a consistent set of physical, chemical and mechanical characteristics is presented, which were measured on the same sample before and after fungal degradation. In the first part of this two-part contribution, elucidating microstructure/stiffness-relationships of degraded wood, changes in physical and chemical data are presented, which were collected from specimens of Scots pine (Pinus sylvestris) sapwood degraded by Gloeophyllum trabeum (brown rot) and Trametes versicolor (white rot) for up to 28 weeks degradation time. A comparison of mass loss with corresponding mass density loss demonstrated that mass loss entails two effects: firstly, a decrease in sample size (more pronounced for G. trabeum), and secondly, a decrease of mass density within the sample (more pronounced for T. versicolor). These two concurrent effects are interrelated with sample size and shape. Hemicelluloses and cellulose are degraded by G. trabeum, while T. versicolor was additionally able to degrade lignin. In particular because of the breakdown of hemicelluloses and paracrystalline parts of cellulose, the equilibrium moisture content of degraded samples is lower than that in the initial state.


European Journal of Wood and Wood Products | 2012

Thermogravimetric analysis for wood decay characterisation

Gry Alfredsen; Thomas K. Bader; Janka Dibdiakova; Tore Filbakk; Susanne Bollmus; Karin Hofstetter

The paper focuses on the use of thermogravimetric analysis (TGA) as a fast method for estimating the change of lignocellulosic materials during fungal degradation in laboratory trials. Traditionally, evaluations of durability tests are based on mass loss. However, to gain more knowledge of the reasons for differences in durability and strength between wooden materials, information on the chemical changes is needed. Pinus sylvestris sapwood was incubated with the brown rot fungus Gloeophyllum trabeum and the white rot fungus Trametes versicolor. The TGA approach used was found to be reproducible between laboratories. The TGA method did not prove useful for wood deteriorated by white rot, but the TGA showed to be a convenient tool for fast estimation of lignocellulosic components both in sound wood and wood decayed by brown rot.


Wood Science and Technology | 2010

Development of high-performance strand boards: engineering design and experimental investigations

Reinhard Stürzenbecher; Karin Hofstetter; Thomas Bogensperger; Gerhard Schickhofer; Josef Eberhardsteiner

Strand-based engineered wood products such as oriented strand boards enjoy great popularity in structural engineering and are widely used for a variety of applications. To strengthen their competitiveness and to enlarge their range of utilization particularly in the load-bearing sector, the mechanical properties of these products need to be improved. This motivated the research efforts to use large-area, slender veneer strands for the production of strand boards with increased stiffness and strength. Target-oriented development of these products requires comprehending the effects of the relevant (micro-)characteristics, such as wood quality, strand geometry, and strand orientation and compaction during the production process, as well as layer assembly and density profile, on the mechanical properties of the finished strand boards. Comprehensive test series, in which these effects on tension, bending and shear properties of the boards have been studied individually, are presented in this paper. The obtained results provided insight into the microstructural load-carrying mechanisms and, thus, yielded valuable knowledge for product optimization and further improvement of custom-designed strand-based engineered wood products.

Collaboration


Dive into the Karin Hofstetter's collaboration.

Top Co-Authors

Avatar

Josef Eberhardsteiner

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas K. Bader

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Hellmich

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Herbert A. Mang

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes Eitelberger

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Reinhard Stürzenbecher

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Jäger

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gry Alfredsen

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ch. Hellmich

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge