Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Huijben is active.

Publication


Featured researches published by Karin Huijben.


The New England Journal of Medicine | 2014

Multiple phenotypes in phosphoglucomutase 1 deficiency

Laura C. Tegtmeyer; Stephan Rust; Monique van Scherpenzeel; Bobby G. Ng; Marie-Estelle Losfeld; Sharita Timal; Kimiyo Raymond; Ping He; Mie Ichikawa; Joris A. Veltman; Karin Huijben; Yoon S. Shin; Vandana Sharma; Maciej Adamowicz; Martin Lammens; Janine Reunert; Anika Witten; Esther Schrapers; Gert Matthijs; Jaak Jaeken; Daisy Rymen; Tanya Stojkovic; P. Laforêt; François Petit; Olivier Aumaître; Elżbieta Czarnowska; Monique Piraud; Teodor Podskarbi; Charles A. Stanley; Reuben Matalon

BACKGROUND Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).


Human Molecular Genetics | 2012

Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing

Sharitakoemari Timal; Alexander Hoischen; Ludwig Lehle; Maciej Adamowicz; Karin Huijben; Jolanta Sykut-Cegielska; Justyna Paprocka; Ewa Jamroz; Francjan J. van Spronsen; Christian Körner; Christian Gilissen; Richard J. Rodenburg; Ilse Eidhof; Lambert van den Heuvel; Christian Thiel; Ron A. Wevers; Eva Morava; Joris A. Veltman; Dirk J. Lefeber

Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In genetically unsolved cases, homozygosity mapping has been applied in consanguineous families. Altogether, this time-consuming diagnostic strategy led to the identification of defects in 17 different CDG-I genes. Here, we applied whole-exome sequencing (WES) in combination with the knowledge of the protein N-glycosylation pathway for gene identification in our remaining group of six unsolved CDG-I patients from unrelated non-consanguineous families. Exome variants were prioritized based on a list of 76 potential CDG-I candidate genes, leading to the rapid identification of one known and two novel CDG-I gene defects. These included the first X-linked CDG-I due to a de novo mutation in ALG13, and compound heterozygous mutations in DPAGT1, together the first two steps in dolichol-PP-glycan assembly, and mutations in PGM1 in two cases, involved in nucleotide sugar biosynthesis. The pathogenicity of the mutations was confirmed by showing the deficient activity of the corresponding enzymes in patient fibroblasts. Combined with these results, the gene defect has been identified in 98% of our CDG-I patients. Our results implicate the potential of WES to unravel disease genes in the CDG-I in newly diagnosed singleton families.


European Journal of Human Genetics | 2007

A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia

Eva Morava; Renate Zeevaert; Eckhard Korsch; Karin Huijben; Suzan Wopereis; Gert Matthijs; Kathelijn Keymolen; Dirk J. Lefeber; Linda De Meirleir; Ron A. Wevers

We describe the clinical and biochemical characteristics in three patients from two different families diagnosed with Congenital Disorder of Glycosylation type IIe owing to a defect in Conserved Oligomeric Golgi complex (COG)7; one of the eight subunits of the COG. The siblings and an unrelated single child of consanguineous parents presented with growth retardation, progressive, severe microcephaly, hypotonia, adducted thumbs, feeding problems by gastrointestinal pseudo-obstruction, failure to thrive, cardiac anomalies, wrinkled skin and episodes of extreme hyperthermia. A combined disorder in the biosynthesis of N- and O-linked glycosylation with hyposialylation was detected. Western blot analysis showed a severe reduction in the COG5 and 7 subunits of the COG. A homozygous, intronic splice site mutation (c.169+4A>C) of the COG7 gene was identified in all patients. The phenotype is similar to that previously described in two patients of North African ethnicity with the same mutation, except for the lack of skeletal anomalies and only a mild liver involvement in our patients. We suggest performing protein glycosylation studies and Western blot for the different COG subunits in patients with progressive microcephaly, growth retardation, hypotonia, adducted thumbs and cardiac defects, especially in association with skin anomalies or episodes of hyperthermia. The presence of the characteristic phenotype might warrant direct DNA analysis.


Annals of Neurology | 2000

Clinical and biochemical characteristics of congenital disorder of glycosylation type Ic, the first recognized endoplasmic reticulum defect in N-glycan synthesis

Stephanie Grünewald; Timo Imbach; Karin Huijben; M.E. Rubio-Gozalbo; Aad Verrips; J. B. C. de Klerk; H. Stroink; J de Rijk-van Andel; J. L. K. Van Hove; U. Wendel; Gert Matthijs; Thierry Hennet; Jacques Jaeken; R.A. Wevers

We report on 8 patients with a recently described novel subtype of congenital disorder of glycosylation type Ic (CDG‐Ic). Their clinical presentation was mainly neurological with developmental retardation, muscular hypotonia, and epilepsy. Several symptoms commonly seen in CDG‐Ia such as inverted nipples, abnormal fat distribution, and cerebellar hypoplasia were not observed. The clinical course is milder overall, with a better neurological outcome, than in CDG‐Ia. The isoelectric focusing pattern of serum transferrin in CDG‐Ia and CDG‐Ic is indistinguishable. Interestingly, β‐trace protein in cerebrospinal fluid derived from immunoblot analysis of the brain showed a less pronounced hypoglycosylation pattern in CDG‐Ic patients than in CDG‐Ia patients. Analysis of lipid‐linked oligosaccharides revealed an accumulation of Man9GlcNAc2 intermediates due to dolichol pyrophosphate–Man9GlcNAc2 α‐1,3 glucosyltransferase deficiency. All patients were homozygous for an A333V mutation. Ann Neurol 2000;47:776–781


Nature Genetics | 2016

NANS-mediated synthesis of sialic acid is required for brain and skeletal development

Clara van Karnebeek; Luisa Bonafé; Xiao-Yan Wen; Maja Tarailo-Graovac; Sara Balzano; Beryl Royer-Bertrand; Angel Ashikov; Livia Garavelli; Isabella Mammi; Licia Turolla; Catherine Breen; Dian Donnai; Valérie Cormier-Daire; Delphine Héron; Gen Nishimura; Shinichi Uchikawa; Belinda Campos-Xavier; Antonio Rossi; Thierry Hennet; Koroboshka Brand-Arzamendi; Jacob Rozmus; Keith Harshman; Brian J. Stevenson; Enrico Girardi; Giulio Superti-Furga; Tammie Dewan; Alissa Collingridge; Jessie Halparin; Colin Ross; Margot I. Van Allen

We identified biallelic mutations in NANS, the gene encoding the synthase for N-acetylneuraminic acid (NeuNAc; sialic acid), in nine individuals with infantile-onset severe developmental delay and skeletal dysplasia. Patient body fluids showed an elevation in N-acetyl-D-mannosamine levels, and patient-derived fibroblasts had reduced NANS activity and were unable to incorporate sialic acid precursors into sialylated glycoproteins. Knockdown of nansa in zebrafish embryos resulted in abnormal skeletal development, and exogenously added sialic acid partially rescued the skeletal phenotype. Thus, NANS-mediated synthesis of sialic acid is required for early brain development and skeletal growth. Normal sialylation of plasma proteins was observed in spite of NANS deficiency. Exploration of endogenous synthesis, nutritional absorption, and rescue pathways for sialic acid in different tissues and developmental phases is warranted to design therapeutic strategies to counteract NANS deficiency and to shed light on sialic acid metabolism and its implications for human nutrition.


American Journal of Human Genetics | 2016

CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation

Jos C. Jansen; Sebahattin Cirak; Monique van Scherpenzeel; Sharita Timal; Janine Reunert; Stephan Rust; Belén Pérez; Dorothée Vicogne; Peter Krawitz; Yoshinao Wada; Angel Ashikov; Celia Pérez-Cerdá; Celia Medrano; Andrea Arnoldy; Alexander Hoischen; Karin Huijben; Gerry Steenbergen; Dulce Quelhas; Luísa Diogo; Daisy Rymen; Jaak Jaeken; Nathalie Guffon; David Cheillan; Lambertus P. van den Heuvel; Yusuke Maeda; Olaf Kaiser; Ulrike Schara; Patrick Gerner; Marjolein A.W. van den Boogert; Adriaan G. Holleboom

Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.


Nature Communications | 2016

ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation.

Eric J.R. Jansen; Sharita Timal; Margret Ryan; Angel Ashikov; Monique van Scherpenzeel; Laurie A. Graham; Hanna Mandel; Alexander Hoischen; Theodore C. Iancu; Kimiyo Raymond; Gerry Steenbergen; Christian Gilissen; Karin Huijben; Nick H M van Bakel; Yusuke Maeda; Richard J. Rodenburg; Maciej Adamowicz; Ellen Crushell; Hans J. P. M. Koenen; Darius Adams; Julia Vodopiutz; Susanne Greber-Platzer; Thomas Müller; Gregor Dueckers; Eva Morava; Jolanta Sykut-Cegielska; Gerard J. M. Martens; Ron A. Wevers; Tim Niehues; Martijn A. Huynen

The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function.


American Journal of Human Genetics | 2016

TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation.

Jos C. Jansen; Sharita Timal; Monique van Scherpenzeel; Helen Michelakakis; Dorothée Vicogne; Angel Ashikov; Marina Moraitou; Alexander Hoischen; Karin Huijben; Gerry Steenbergen; Marjolein A.W. van den Boogert; Francesco Porta; Pier Luigi Calvo; Mersyni Mavrikou; Giovanna Cenacchi; Geert van den Bogaart; Jody Salomon; Adriaan G. Holleboom; Richard J. Rodenburg; Joost P. H. Drenth; Martijn A. Huynen; Ron A. Wevers; Eva Morava; François Foulquier; Joris A. Veltman; Dirk J. Lefeber

Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation.


Nature Genetics | 2017

Corrigendum: NANS-mediated synthesis of sialic acid is required for brain and skeletal development

Clara van Karnebeek; Luisa Bonafé; Xiao-Yan Wen; Maja Tarailo-Graovac; Sara Balzano; Beryl Royer-Bertrand; Angel Ashikov; Livia Garavelli; Isabella Mammi; Licia Turolla; Catherine Breen; Dian Donnai; Valerie Cormier; Delphine Héron; Gen Nishimura; Shinichi Uchikawa; Belinda Campos-Xavier; Antonio Rossi; Thierry Hennet; Koroboshka Brand-Arzamendi; Jacob Rozmus; Keith Harshman; Brian J. Stevenson; Enrico Girardi; Giulio Superti-Furga; Tammie Dewan; Alissa Collingridge; Jessie Halparin; Colin Ross; Margot I. Van Allen

Corrigendum: NANS-mediated synthesis of sialic acid is required for brain and skeletal development


Clinical Chemistry | 2003

Apolipoprotein C-III Isofocusing in the Diagnosis of Genetic Defects in O-Glycan Biosynthesis

Suzan Wopereis; Stephanie Grünewald; Eva Morava; Johannes M. Penzien; Paz Briones; M. Teresa Garcı́a-Silva; P.N.M. Demacker; Karin Huijben; Ron A. Wevers

Collaboration


Dive into the Karin Huijben's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron A. Wevers

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Dirk J. Lefeber

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Angel Ashikov

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Suzan Wopereis

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharita Timal

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Gert Matthijs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stephanie Grünewald

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Alexander Hoischen

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge