Karin Ljung
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karin Ljung.
Cell | 2008
Yi Tao; Jean-Luc Ferrer; Karin Ljung; Florence Pojer; Fangxin Hong; Jeff A. Long; Lin Li; Javier Moreno; Marianne E. Bowman; Lauren J. Ivans; Youfa Cheng; Jason Lim; Yunde Zhao; Carlos L. Ballaré; Göran Sandberg; Joseph P. Noel; Joanne Chory
Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.
Cell | 2002
Jiří Friml; Eva Benková; Ikram Blilou; Justyna Wišniewska; Thorsten Hamann; Karin Ljung; Scott T. Woody; Göran Sandberg; Ben Scheres; Gerd Jürgens; Klaus Palme
In contrast to animals, little is known about pattern formation in plants. Physiological and genetic data suggest the involvement of the phytohormone auxin in this process. Here, we characterize a novel member of the PIN family of putative auxin efflux carriers, Arabidopsis PIN4, that is localized in developing and mature root meristems. Atpin4 mutants are defective in establishment and maintenance of endogenous auxin gradients, fail to canalize externally applied auxin, and display various patterning defects in both embryonic and seedling roots. We propose a role for AtPIN4 in generating a sink for auxin below the quiescent center of the root meristem that is essential for auxin distribution and patterning.
Nature Cell Biology | 2008
Kamal Swarup; Eva Benková; Ranjan Swarup; Ilda Casimiro; Benjamin Péret; Yaodong Yang; Geraint Parry; Erik Nielsen; Ive De Smet; Steffen Vanneste; Mitch P. Levesque; David John Carrier; Nicholas James; Vanessa Calvo; Karin Ljung; Eric M. Kramer; Rebecca Roberts; Neil S. Graham; Sylvestre Marillonnet; Kanu Patel; Jonathan D. G. Jones; Christopher G. Taylor; Daniel P. Schachtman; Sean T. May; Göran Sandberg; Philip N. Benfey; Jiri Friml; Ian D. Kerr; Tom Beeckman; Laurent Laplaze
Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.
The Plant Cell | 2007
Kamil Růžička; Karin Ljung; Steffen Vanneste; Radka Podhorská; Tom Beeckman; Jiří Friml; Eva Benková
In plants, each developmental process integrates a network of signaling events that are regulated by different phytohormones, and interactions among hormonal pathways are essential to modulate their effect. Continuous growth of roots results from the postembryonic activity of cells within the root meristem that is controlled by the coordinated action of several phytohormones, including auxin and ethylene. Although their interaction has been studied intensively, the molecular and cellular mechanisms underlying this interplay are unknown. We show that the effect of ethylene on root growth is largely mediated by the regulation of the auxin biosynthesis and transport-dependent local auxin distribution. Ethylene stimulates auxin biosynthesis and basipetal auxin transport toward the elongation zone, where it activates a local auxin response leading to inhibition of cell elongation. Consistently, in mutants affected in auxin perception or basipetal auxin transport, ethylene cannot activate the auxin response nor regulate the root growth. In addition, ethylene modulates the transcription of several components of the auxin transport machinery. Thus, ethylene achieves a local activation of the auxin signaling pathway and regulates root growth by both stimulating the auxin biosynthesis and by modulating the auxin transport machinery.
Developmental Cell | 2010
Gabriel Krouk; Benoît Lacombe; Agnieszka Bielach; Francine Perrine-Walker; Katerina Malinska; Emmanuelle Mounier; Klára Hoyerová; Pascal Tillard; Sarah Leon; Karin Ljung; Eva Zazimalova; Eva Benková; Philippe Nacry; Alain Gojon
Nitrate is both a nitrogen source for higher plants and a signal molecule regulating their development. In Arabidopsis, the NRT1.1 nitrate transporter is crucial for nitrate signaling governing root growth, and has been proposed to act as a nitrate sensor. However, the sensing mechanism is unknown. Herein we show that NRT1.1 not only transports nitrate but also facilitates uptake of the phytohormone auxin. Moreover, nitrate inhibits NRT1.1-dependent auxin uptake, suggesting that transduction of nitrate signal by NRT1.1 is associated with a modification of auxin transport. Among other effects, auxin stimulates lateral root development. Mutation of NRT1.1 enhances both auxin accumulation in lateral roots and growth of these roots at low, but not high, nitrate concentration. Thus, we propose that NRT1.1 represses lateral root growth at low nitrate availability by promoting basipetal auxin transport out of these roots. This defines a mechanism connecting nutrient and hormone signaling during organ development.
The Plant Cell | 2005
Karin Ljung; Anna K. Hull; John L. Celenza; Masashi Yamada; Mark Estelle; Jennifer Normanly; Göran Sandberg
Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.
The Plant Cell | 2007
Ranjan Swarup; Paula Perry; Dik Hagenbeek; Dominique Van Der Straeten; Gerrit T.S. Beemster; Göran Sandberg; Rishikesh P. Bhalerao; Karin Ljung; Malcolm J. Bennett
Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion.
The Plant Cell | 2009
Sara V. Petersson; Annika I. Johansson; Mariusz Kowalczyk; Alexander Makoveychuk; Jean Y. J. Wang; Thomas Moritz; Markus Grebe; Philip N. Benfey; Göran Sandberg; Karin Ljung
Local concentration gradients of the plant growth regulator auxin (indole-3-acetic acid [IAA]) are thought to instruct the positioning of organ primordia and stem cell niches and to direct cell division, expansion, and differentiation. High-resolution measurements of endogenous IAA concentrations in support of the gradient hypothesis are required to substantiate this hypothesis. Here, we introduce fluorescence-activated cell sorting of green fluorescent protein–marked cell types combined with highly sensitive mass spectrometry methods as a novel means for analyses of IAA distribution and metabolism at cellular resolution. Our results reveal the presence of IAA concentration gradients within the Arabidopsis thaliana root tip with a distinct maximum in the organizing quiescent center of the root apex. We also demonstrate that the root apex provides an important source of IAA and that cells of all types display a high synthesis capacity, suggesting a substantial contribution of local biosynthesis to auxin homeostasis in the root tip. Our results indicate that local biosynthesis and polar transport combine to produce auxin gradients and maxima in the root tip.
Plant Molecular Biology | 2002
Karin Ljung; Anna K. Hull; Mariusz Kowalczyk; Alan Marchant; John L. Celenza; Jerry D. Cohen; Göran Sandberg
It was once proposed that there are only two kinds of biology: elegant genetics and sloppy biochemistry (E.C. Pauling, unpublished). For those who study auxin metabolism in Arabidopsis, this geneticist’s view of the different approaches to biological research has particular resonance. Arabidopsis has the advantage of providing a model molecular genetic system in a plant that uses the indole ring to produce diverse compounds, such as the glucosinolate glucobrassicin, the phytoalexin camalexin and the phytohormone indole-3-acetic acid (IAA). This model plant genetic system offers unique opportunities to apply new approaches to answer long-standing questions regarding auxin. However, studies in Arabidopsis can often present us with confounding problems when it comes to careful dissection of the network of indolic pathways in either normal or mutant plants. In this review, we focus our attention on IAA metabolism in Arabidopsis, However, by necessity we have been obliged to draw complementary information from the literature on other species to delineate as completely as possible the most current views on processes responsible for IAA production and its regulation.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Pierre Barbier de Reuille; Isabelle Bohn-Courseau; Karin Ljung; Halima Morin; Nicola Carraro; Christophe Godin; Jan Traas
The active transport of the plant hormone auxin plays a major role in the initiation of organs at the shoot apex. Polar localized membrane proteins of the PIN1 family facilitate this transport, and recent observations suggest that auxin maxima created by these proteins are at the basis of organ initiation. This hypothesis is based on the visual, qualitative characterization of the complex distribution patterns of the PIN1 protein in Arabidopsis. To take these analyses further, we investigated the properties of the patterns using computational modeling. The simulations reveal previously undescribed properties of PIN1 distribution. In particular, they suggest an important role for the meristem summit in the distribution of auxin. We confirm these predictions by further experimentation and propose a detailed model for the dynamics of auxin fluxes at the shoot apex.