Karin Tran-Lundmark
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karin Tran-Lundmark.
Circulation Research | 2004
Phan-Kiet Tran; Karin Tran-Lundmark; Raija Soininen; Karl Tryggvason; Johan Thyberg; Ulf Hedin
Abstract— Smooth muscle cell (SMC) proliferation is a critical process in vascular disease. Heparan sulfate (HS) proteoglycans inhibit SMC growth, but the role of endogenous counterparts in the vessel wall in control of SMC function is not known in detail. Perlecan is the major HS proteoglycans in SMC basement membranes and in vessel wall extracellular matrix (ECM). In this study, transgenic mice with HS-deficient perlecan were analyzed with respect to vascular phenotype and intimal lesion formation. Furthermore, SMC cultures were established and characterized with respect to morphology, immunocytochemical features, proteoglycan synthesis, proliferative capacity, and ECM binding of basic fibroblast growth factor (FGF-2). In vitro, mutant SMCs formed basement membranes with perlecan core protein, but with decreased levels of HS, they showed diminished secretion of HS-containing perlecan into the medium and a defective ECM-binding capacity of FGF-2. In vitro, mutant SMCs showed increased proliferation compared with wild-type cells, and in vivo, enhanced SMC proliferation and intimal hyperplasia were observed after flow cessation of the carotid artery in mutant mice. The results indicate that the endogenous HS side-chains of perlecan contribute to SMC growth control both in vitro and during intimal hyperplasia, possibly by sequestering heparin-binding mitogens such as FGF-2.
Circulation Research | 2008
Karin Tran-Lundmark; Phan-Kiet Tran; Gabrielle Paulsson-Berne; Vincent Fridén; Raija Soininen; Karl Tryggvason; Thomas N. Wight; Michael G. Kinsella; Jan Borén; Ulf Hedin
Heparan sulfate (HS) has been proposed to be antiatherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2&Dgr;3/&Dgr;3). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2&Dgr;3/&Dgr;3 mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2&Dgr;3/&Dgr;3 smooth muscle cells was reduced. In vivo, at 20 minutes influx of human 125I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2&Dgr;3/&Dgr;3 mice compared to ApoE0 mice. However, at 72 hours accumulation of 125I-LDL was similar in ApoE0/Hspg2&Dgr;3/&Dgr;3 and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/Hspg2&Dgr;3/&Dgr;3 mice showed decreased staining for apoB and increased smooth muscle &agr;-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are proatherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions.
Circulation Research | 2008
Karin Tran-Lundmark; Phan Kiet Tran; Gabrielle Paulsson-Berne; Vincent Fridén; Raija Soininen; Karl Tryggvason; Thomas N. Wight; Michael G. Kinsella; Jan Borén; Ulf Hedin
Heparan sulfate (HS) has been proposed to be antiatherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2Δ3/Δ3). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2Δ3/Δ3 mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2Δ3/Δ3 smooth muscle cells was reduced. In vivo, at 20 minutes influx of human 125I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2Δ3/Δ3 mice compared to ApoE0 mice. However, at 72 hours accumulation of 125I-LDL was similar in A...
American Journal of Physiology-lung Cellular and Molecular Physiology | 2012
Ya-Ting Chang; Andreas Ringman Uggla; Cecilia Österholm; Phan-Kiet Tran; Ann-Christine Eklöf; Mariette Lengquist; Ulf Hedin; Karin Tran-Lundmark; Björn Frenckner
The pathophysiology of congenital diaphragmatic hernia (CDH) is constituted by pulmonary hypoplasia and pulmonary hypertension (PH). We previously reported successful treatment with imatinib of a patient with CDH. This study examines the effect of antenatal imatinib administration on the pulmonary vasculature in a rat model of CDH. Pregnant rats were given nitrofen to induce CDH. Controls were given olive oil. Half of the CDH fetuses and half of the controls were treated with imatinib antenatally E17-E21, rendering four groups: Control, Control+Imatinib, CDH, and CDH+Imatinib. Lung sections were obtained for morphometry and immunohistochemistry, and protein was purified for Western blot. Effects of nitrofen and imatinib on Ki-67, caspase-3, PDGF-B, and PDGF receptors were analyzed. Imatinib significantly reduced medial wall thickness in pulmonary arteries of rats with CDH. It also normalized lumen area and reduced the proportion of fully muscularized arteries. Imatinib also caused medial thinning in the control group. Cell proliferation was increased in CDH, and this proliferation was significantly reduced by imatinib. PDGF-B and PDGFR-β were upregulated in CDH, and imatinib treatment resulted in a downregulation. PDGFR-α remained unchanged in CDH but was significantly downregulated by imatinib. Antenatal imatinib treatment reduces development of medial wall thickness and restores lumen area in pulmonary arteries in nitrofen-induced CDH. The mechanism is reduced cell proliferation. Imatinib is an interesting candidate for antenatal therapy for PH in CDH, but potential side effects need to be investigated and more specific targeting of PDGF signaling is needed.
Pulmonary circulation | 2016
Ya-Ting Chang; Christina K. Chan; Inger Eriksson; Pamela Y. Johnson; Xiaofang Cao; Christian Westöö; Christian Norvik; Annika Andersson-Sjöland; Gunilla Westergren-Thorsson; Staffan Johansson; Ulf Hedin; Lena Kjellén; Thomas N. Wight; Karin Tran-Lundmark
Pulmonary arterial hypertension (PAH) is a lethal condition for which there is no effective curative pharmacotherapy. PAH is characterized by vasoconstriction, wall thickening of pulmonary arteries, and increased vascular resistance. Versican is a chondroitin sulfate proteoglycan in the vascular extracellular matrix that accumulates following vascular injury and promotes smooth-muscle cell proliferation in systemic arteries. Here, we investigated whether versican may play a similar role in PAH. Paraffin-embedded lung sections from patients who underwent lung transplantation to treat PAH were used for immunohistochemistry. The etiologies of PAH in the subjects involved in this study were idiopathic PAH, scleroderma, and congenital heart disease (atrial septal defect) with left-to-right shunt. Independent of the underlying etiology, increased versican immunostaining was observed in areas of medial thickening, in neointima, and in plexiform lesions. Western blot of lung tissue lysates confirmed accumulation of versican in patients with PAH. Double staining for versican and CD45 showed only occasional colocalization in neointima of high-grade lesions and plexiform lesions. In vitro, metabolic labeling with [35S]sulfate showed that human pulmonary artery smooth-muscle cells (hPASMCs) produce mainly chondroitin sulfate glycosaminoglycans. In addition, hypoxia, but not cyclic stretch, was demonstrated to increase both versican messenger RNA expression and protein synthesis by hPASMCs. Versican accumulates in vascular lesions of PAH, and the amount of versican correlates more with lesion severity than with underlying etiology or inflammation. Hypoxia is a possible regulator of versican accumulation, which may promote proliferation of pulmonary smooth-muscle cells and vascular remodeling in PAH.
Canadian Journal of Cardiology | 2014
Beiping Qiang; Sang Yup Lim; Michael Lekas; M.A. Kuliszewski; Rafael Wolff; Azriel B. Osherov; D. Rudenko; Howard Leong-Poi; Hossein Noyan; Mansoor Husain; Kiet Tran; Karl Tryggvason; Ulf Hedin; Karin Tran-Lundmark; Bradley H. Strauss
BACKGROUND Perlecan is a heparan sulfate proteoglycan (HSPG) constituent of the extracellular matrix with roles in cell growth, differentiation, and angiogenesis. The role of the HS side chains in regulating in vivo angiogenesis after hind-limb ischemia is unknown. METHODS Heparan sulfate (HS)-deficient perlecan (Hspg2(Δ3/Δ3)) mice (n = 35), containing normal perlecan core protein but deficient in HS side chains, and wild-type (n = 33) littermates underwent surgical induction of hind-limb ischemia. Laser Doppler perfusion imaging (LDPI) and contrast-enhanced ultrasonography (CEU) provided serial assessment of hind-limb perfusion. Harvested muscles underwent immunostaining for endothelial cell density (CD31), real-time reverse transcription polymerase chain reaction RT-PCR for vascular endothelial growth factor (VEGF) mRNA expression and western blot analysis for VEGF and fibroblast growth factor (FGF)2 protein expression at days 2 and 28. RESULTS Serial LDPI showed significantly greater perfusion recovery in ischemic limbs of wild-type compared with Hspg2(Δ3/Δ3) mice. CEU showed that normalized microvascular perfusion was increased in wild-type compared with Hspg2(Δ3/Δ3) mice at day 28 (0.67 ± 0.12 vs 0.26 ± 0.08; P = 0.001). CD31-positive cell counts were significantly higher in wild-type compared with Hspg2(Δ3/Δ3) mice on day 28 (122 ± 30 cells vs 84 ± 34 cells per high-power field [HPF]; P < 0.05). Endogenous VEGF mRNA expression (P < 0.05) and VEGF protein expression (P < 0.002) were significantly decreased in the ischemic limbs of Hspg2(Δ3/Δ3) mice compared with wild-type mice at day 2 and day 28, respectively. FGF2 protein expression showed no significant differences. CONCLUSIONS These results suggest that the HS side chains in perlecan are important mediators of the angiogenic response to ischemia through a mechanism that involves upregulation of VEGF expression.
Journal of Cellular Physiology | 2015
Karin Tran-Lundmark; Philip Tannenberg; Bernhard H. Rauch; Johan Ekstrand; Phan Kiet Tran; Ulf Hedin; Michael G. Kinsella
Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti‐proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti‐proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all‐trans‐retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild‐type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate‐deficient perlecan, indicating that the inhibition is perlecan heparan sulfate‐dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild‐type and mutant SMCs, consistent with previous studies of perlecan‐dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate‐chains. J. Cell. Physiol. 230: 482–487, 2015.
Cardiovascular Research | 2015
Ya-Ting Chang; Chi-Nan Tseng; Philip Tannenberg; Linnéa Eriksson; Ke Yuan; Vinicio de Jesus Perez; Johan Lundberg; Mariette Lengquist; Ileana Ruxandra Botusan; Sergiu-Bogdan Catrina; Phan-Kiet Tran; Ulf Hedin; Karin Tran-Lundmark
AIMS Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation. In this study, we have explored the effects of perlecan HS deficiency on pulmonary vascular development and in hypoxia-induced PH. METHODS AND RESULTS In normoxia, Hspg2(Δ3/Δ3) mice, deficient in perlecan HS, had reduced pericytes and muscularization of intra-acinar vessels. Pulmonary angiography revealed a peripheral perfusion defect. Despite these abnormalities, right ventricular systolic pressure (RVSP) and myocardial mass remained normal. After 4 weeks of hypoxia, increases in the proportion of muscularized vessels, RVSP, and right ventricular hypertrophy were significantly less in Hspg2(Δ3/Δ3) compared with wild type. The early phase of hypoxia induced a significantly lower increase in fibroblast growth factor receptor-1 (FGFR1) protein level and receptor phosphorylation, and reduced pulmonary artery smooth muscle cell (PASMC) proliferation in Hspg2(Δ3/Δ3). At 4 weeks, FGF2 mRNA and protein were also significantly reduced in Hspg2(Δ3/Δ3) lungs. Ligand and carbohydrate engagement assay showed that perlecan HS is required for HS-FGF2-FGFR1 ternary complex formation. In vitro, proliferation assays showed that PASMC proliferation is reduced by selective FGFR1 inhibition. PASMC adhesion to fibronectin was higher in Hspg2(Δ3/Δ3) compared with wild type. CONCLUSIONS Perlecan HS chains are important for normal vascular arborization and recruitment of pericytes to pulmonary vessels. Perlecan HS deficiency also attenuates hypoxia-induced PH, where the underlying mechanisms involve impaired FGF2/FGFR1 interaction, inhibition of PASMC growth, and altered cell-matrix interactions.
American Journal of Physiology-heart and Circulatory Physiology | 2014
Lara Gotha; Sang Yup Lim; Azriel B. Osherov; Rafael Wolff; Beiping Qiang; Ilana Erlich; Nafiseh Nili; Sivaram Pillarisetti; Ya-Ting Chang; Phan Kiet Tran; Karl Tryggvason; Ulf Hedin; Karin Tran-Lundmark; Suzanne L. Advani; Richard E. Gilbert; Bradley H. Strauss
Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2(Δ3/Δ3) (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type (P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB (P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.
Journal of Vascular Research | 2017
Diana Dahan; Thi Hien Tran; Philip Tannenberg; Mari Ekman; Catarina Rippe; Thomas Boettger; Thomas Braun; Karin Tran-Lundmark; P Tran; Karl Swärd; Sebastian Albinsson
Background: Serotonin (5-HT) is considered to play a role in pulmonary arterial hypertension by regulating vascular remodeling and smooth muscle contractility. Here, arteries from mice with inducible and smooth muscle-specific deletion of Dicer were used to address mechanisms by which microRNAs control 5-HT-induced contraction. Methods: Mice were used 5 weeks after Dicer deletion, and pulmonary artery contractility was analyzed by wire myography. Results: No change was seen in right ventricular systolic pressure following dicer deletion, but systemic blood pressure was reduced. Enhanced 5-HT-induced contraction in Dicer KO pulmonary arteries was associated with increased 5-HT2A receptor mRNA expression whereas 5-HT1B and 5-HT2B receptor mRNAs were unchanged. Contraction by the 5-HT2A agonist TCB-2 was increased in Dicer KO as was the response to the 5-HT2B agonist BW723C86. Effects of Src and protein kinase C inhibition were similar in control and KO arteries, but the effect of inhibition of Rho kinase was reduced. We identified miR-30c as a potential candidate for 5-HT2A receptor regulation as it repressed 5-HT2A mRNA and protein. Conclusion: Our findings show that 5-HT receptor signaling in the arterial wall is subject to regulation by microRNAs and that this entails altered 5-HT2A receptor expression and signaling.